Suppr超能文献

特定主题的有限元膝关节模型的高效开发:软组织附着点的自动识别。

Efficient development of subject-specific finite element knee models: Automated identification of soft-tissue attachments.

作者信息

Malbouby Vahid, Gibbons Kalin D, Bursa Nurbanu, Ivy Amanda K, Fitzpatrick Clare K

机构信息

Mechanical and Biomedical Engineering, Boise State University, Boise, ID, United States.

Biomedical Research Institute, Boise State University, Boise, ID, United States.

出版信息

J Biomech. 2025 Jan;178:112441. doi: 10.1016/j.jbiomech.2024.112441. Epub 2024 Nov 26.

Abstract

Musculoskeletal disorders impact quality of life and incur substantial socio-economic costs. While in vivo and in vitro studies provide valuable insights, they are often limited by invasiveness and logistical constraints. Finite element (FE) analysis offers a non-invasive, cost-effective alternative for studying joint mechanics. This study introduces a fully automated algorithm for identifying soft-tissue attachment sites to streamline the creation of subject-specific FE knee models from magnetic resonance images. Twelve knees were selected from the Osteoarthritis Initiative database and segmented to create 3D meshes of bone and cartilage. Attachment sites were identified in three conditions: manually by two evaluators and via our automated Python-based algorithm. All knees underwent FE simulations of a 90° flexion-extension cycle, and 68 kinematic, force, contact, stress and strain outputs were extracted. The automated process was compared against manual identification to assess intra-operator variability. The attachment site locations were consistent across all three conditions, with average distances of 3.0 ± 0.5 to 3.1 ± 0.6 mm and no significant differences between conditions (p = 0.90). FE outputs were analyzed using Pearson correlation coefficients, randomized mean square error, and pairwise dynamic time warping in conjunction with ANOVA and Kruskal-Wallis. There were no statistical differences in pairwise comparisons of 67 of 68 FE output variables, demonstrating the automated method's consistency with manual identification. Our automated approach significantly reduces processing time from hours to seconds, facilitating large-scale studies and enhancing reproducibility in biomechanical research. This advancement holds promise for broader clinical and research applications, supporting the efficient development of personalized musculoskeletal models.

摘要

肌肉骨骼疾病会影响生活质量,并产生巨大的社会经济成本。虽然体内和体外研究提供了有价值的见解,但它们往往受到侵入性和后勤限制的制约。有限元(FE)分析为研究关节力学提供了一种非侵入性、具有成本效益的替代方法。本研究引入了一种全自动算法,用于识别软组织附着部位,以简化从磁共振图像创建特定于个体的有限元膝关节模型的过程。从骨关节炎倡议数据库中选取了12个膝关节,并进行分割以创建骨骼和软骨的三维网格。在三种情况下识别附着部位:由两名评估人员手动识别以及通过我们基于Python的自动算法识别。所有膝关节都经历了一个90°屈伸周期的有限元模拟,并提取了68个运动学、力、接触、应力和应变输出。将自动过程与手动识别进行比较,以评估操作人员内部的变异性。在所有三种情况下,附着部位的位置是一致的,平均距离为3.0±0.5至3.1±0.6毫米,不同情况之间没有显著差异(p = 0.90)。使用皮尔逊相关系数、随机均方误差和成对动态时间规整结合方差分析和克鲁斯卡尔 - 沃利斯检验对有限元输出进行分析。68个有限元输出变量中的67个在成对比较中没有统计学差异,这表明自动方法与手动识别具有一致性。我们的自动方法显著减少了处理时间,从数小时缩短至数秒,便于进行大规模研究并提高生物力学研究的可重复性。这一进展有望在更广泛的临床和研究应用中得到应用,支持个性化肌肉骨骼模型的高效开发。

相似文献

1
Efficient development of subject-specific finite element knee models: Automated identification of soft-tissue attachments.
J Biomech. 2025 Jan;178:112441. doi: 10.1016/j.jbiomech.2024.112441. Epub 2024 Nov 26.
2
Swin UNETR Segmentation with Automated Geometry Filtering for Biomechanical Modeling of Knee Joint Cartilage.
Ann Biomed Eng. 2025 Apr;53(4):908-922. doi: 10.1007/s10439-024-03675-x. Epub 2025 Jan 9.
3
An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint.
IEEE Trans Biomed Eng. 2025 Jan;72(1):56-69. doi: 10.1109/TBME.2024.3438272. Epub 2025 Jan 15.
5
Rapid CT-based Estimation of Articular Cartilage Biomechanics in the Knee Joint Without Cartilage Segmentation.
Ann Biomed Eng. 2020 Dec;48(12):2965-2975. doi: 10.1007/s10439-020-02666-y. Epub 2020 Nov 11.
7
A finite element model of the human knee joint for the study of tibio-femoral contact.
J Biomech Eng. 2002 Jun;124(3):273-80. doi: 10.1115/1.1470171.
8
Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis.
Comput Methods Biomech Biomed Engin. 2014;17(13):1502-17. doi: 10.1080/10255842.2014.899588. Epub 2014 May 1.
9
Validated Computational Framework for Evaluation of In Vivo Knee Mechanics.
J Biomech Eng. 2020 Aug 1;142(8). doi: 10.1115/1.4045906.

引用本文的文献

1
Validating subject-specific knee models from measurements.
Front Bioeng Biotechnol. 2025 Aug 14;13:1554836. doi: 10.3389/fbioe.2025.1554836. eCollection 2025.

本文引用的文献

1
An Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee Joint.
IEEE Trans Biomed Eng. 2025 Jan;72(1):56-69. doi: 10.1109/TBME.2024.3438272. Epub 2025 Jan 15.
2
Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture Locations Using Dynamic Drop Tests.
Ann Biomed Eng. 2024 Apr;52(4):816-831. doi: 10.1007/s10439-023-03402-y. Epub 2024 Feb 19.
3
Osteoarthritis year in review 2023: Biomechanics.
Osteoarthritis Cartilage. 2024 Feb;32(2):138-147. doi: 10.1016/j.joca.2023.11.015. Epub 2023 Dec 2.
4
Finite element analysis in the optimization of posterior-stabilized total knee arthroplasty.
Orthop Traumatol Surg Res. 2024 Feb;110(1S):103765. doi: 10.1016/j.otsr.2023.103765. Epub 2023 Nov 17.
5
The non-invasive evaluation technique of patellofemoral joint stress: a systematic literature review.
Front Bioeng Biotechnol. 2023 Jun 29;11:1197014. doi: 10.3389/fbioe.2023.1197014. eCollection 2023.
7
Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee.
Front Bioeng Biotechnol. 2022 Dec 9;10:1059003. doi: 10.3389/fbioe.2022.1059003. eCollection 2022.
8
Osteoarthritis year in review 2021: mechanics.
Osteoarthritis Cartilage. 2022 May;30(5):663-670. doi: 10.1016/j.joca.2021.12.012. Epub 2022 Jan 23.
10
A review on segmentation of knee articular cartilage: from conventional methods towards deep learning.
Artif Intell Med. 2020 Jun;106:101851. doi: 10.1016/j.artmed.2020.101851. Epub 2020 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验