Malbouby Vahid, Gibbons Kalin D, Bursa Nurbanu, Ivy Amanda K, Fitzpatrick Clare K
Mechanical and Biomedical Engineering, Boise State University, Boise, ID, United States.
Biomedical Research Institute, Boise State University, Boise, ID, United States.
J Biomech. 2025 Jan;178:112441. doi: 10.1016/j.jbiomech.2024.112441. Epub 2024 Nov 26.
Musculoskeletal disorders impact quality of life and incur substantial socio-economic costs. While in vivo and in vitro studies provide valuable insights, they are often limited by invasiveness and logistical constraints. Finite element (FE) analysis offers a non-invasive, cost-effective alternative for studying joint mechanics. This study introduces a fully automated algorithm for identifying soft-tissue attachment sites to streamline the creation of subject-specific FE knee models from magnetic resonance images. Twelve knees were selected from the Osteoarthritis Initiative database and segmented to create 3D meshes of bone and cartilage. Attachment sites were identified in three conditions: manually by two evaluators and via our automated Python-based algorithm. All knees underwent FE simulations of a 90° flexion-extension cycle, and 68 kinematic, force, contact, stress and strain outputs were extracted. The automated process was compared against manual identification to assess intra-operator variability. The attachment site locations were consistent across all three conditions, with average distances of 3.0 ± 0.5 to 3.1 ± 0.6 mm and no significant differences between conditions (p = 0.90). FE outputs were analyzed using Pearson correlation coefficients, randomized mean square error, and pairwise dynamic time warping in conjunction with ANOVA and Kruskal-Wallis. There were no statistical differences in pairwise comparisons of 67 of 68 FE output variables, demonstrating the automated method's consistency with manual identification. Our automated approach significantly reduces processing time from hours to seconds, facilitating large-scale studies and enhancing reproducibility in biomechanical research. This advancement holds promise for broader clinical and research applications, supporting the efficient development of personalized musculoskeletal models.
肌肉骨骼疾病会影响生活质量,并产生巨大的社会经济成本。虽然体内和体外研究提供了有价值的见解,但它们往往受到侵入性和后勤限制的制约。有限元(FE)分析为研究关节力学提供了一种非侵入性、具有成本效益的替代方法。本研究引入了一种全自动算法,用于识别软组织附着部位,以简化从磁共振图像创建特定于个体的有限元膝关节模型的过程。从骨关节炎倡议数据库中选取了12个膝关节,并进行分割以创建骨骼和软骨的三维网格。在三种情况下识别附着部位:由两名评估人员手动识别以及通过我们基于Python的自动算法识别。所有膝关节都经历了一个90°屈伸周期的有限元模拟,并提取了68个运动学、力、接触、应力和应变输出。将自动过程与手动识别进行比较,以评估操作人员内部的变异性。在所有三种情况下,附着部位的位置是一致的,平均距离为3.0±0.5至3.1±0.6毫米,不同情况之间没有显著差异(p = 0.90)。使用皮尔逊相关系数、随机均方误差和成对动态时间规整结合方差分析和克鲁斯卡尔 - 沃利斯检验对有限元输出进行分析。68个有限元输出变量中的67个在成对比较中没有统计学差异,这表明自动方法与手动识别具有一致性。我们的自动方法显著减少了处理时间,从数小时缩短至数秒,便于进行大规模研究并提高生物力学研究的可重复性。这一进展有望在更广泛的临床和研究应用中得到应用,支持个性化肌肉骨骼模型的高效开发。