Suppr超能文献

用于膝关节软骨生物力学建模的具有自动几何滤波功能的Swin UNETR分割

Swin UNETR Segmentation with Automated Geometry Filtering for Biomechanical Modeling of Knee Joint Cartilage.

作者信息

Kakavand Reza, Tahghighi Peyman, Ahmadi Reza, Edwards W Brent, Komeili Amin

机构信息

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, CCIT216, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.

McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.

出版信息

Ann Biomed Eng. 2025 Apr;53(4):908-922. doi: 10.1007/s10439-024-03675-x. Epub 2025 Jan 9.

Abstract

PURPOSE

Simulation studies, such as finite element (FE) modeling, offer insights into knee joint biomechanics, which may not be achieved through experimental methods without direct involvement of patients. While generic FE models have been used to predict tissue biomechanics, they overlook variations in population-specific geometry, loading, and material properties. In contrast, subject-specific models account for these factors, delivering enhanced predictive precision but requiring significant effort and time for development.

METHODS

This study aimed to facilitate subject-specific knee joint FE modeling by integrating an automated cartilage segmentation algorithm using a 3D Swin UNETR. This algorithm provided initial segmentation of knee cartilage, followed by automated geometry filtering to refine surface roughness and continuity. In addition to the standard metrics of image segmentation performance, such as Dice similarity coefficient (DSC) and Hausdorff distance, the method's effectiveness was also assessed in FE simulation. Nine pairs of knee cartilage FE models, using manual and automated segmentation methods, were developed to compare the predicted stress and strain responses during gait.

RESULTS

The automated segmentation achieved high Dice similarity coefficients of 89.4% for femoral and 85.1% for tibial cartilage, with a Hausdorff distance of 2.3 mm between the automated and manual segmentation. Mechanical results including maximum principal stress and strain, fluid pressure, fibril strain, and contact area showed no significant differences between the manual and automated FE models.

CONCLUSION

These findings demonstrate the effectiveness of the proposed automated segmentation method in creating accurate knee joint FE models. The automated models developed in this study have been made publicly accessible to support biomechanical modeling and medical image segmentation studies ( https://data.mendeley.com/datasets/dc832g7j5m/1 ).

摘要

目的

模拟研究,如有限元(FE)建模,有助于深入了解膝关节生物力学,而不直接涉及患者的实验方法可能无法实现这一点。虽然通用有限元模型已被用于预测组织生物力学,但它们忽略了人群特异性几何形状、负荷和材料特性的变化。相比之下,个体特异性模型考虑了这些因素,提高了预测精度,但开发需要大量的精力和时间。

方法

本研究旨在通过集成使用3D Swin UNETR的自动软骨分割算法,促进个体特异性膝关节有限元建模。该算法提供了膝关节软骨的初始分割,随后进行自动几何滤波以改善表面粗糙度和连续性。除了图像分割性能的标准指标,如骰子相似系数(DSC)和豪斯多夫距离外,还在有限元模拟中评估了该方法的有效性。开发了九对使用手动和自动分割方法的膝关节软骨有限元模型,以比较步态期间预测的应力和应变响应。

结果

自动分割在股骨软骨上实现了89.4%的高骰子相似系数,在胫骨软骨上实现了85.1%的高骰子相似系数,自动分割和手动分割之间的豪斯多夫距离为2.3毫米。包括最大主应力和应变、流体压力、纤维应变和接触面积在内的力学结果在手动和自动有限元模型之间没有显著差异。

结论

这些发现证明了所提出的自动分割方法在创建准确的膝关节有限元模型方面的有效性。本研究中开发的自动模型已公开提供,以支持生物力学建模和医学图像分割研究(https://data.mendeley.com/datasets/dc832g7j5m/1)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验