Suppr超能文献

使用功能近红外光谱和图卷积网络预测皮质-丘脑功能连接。

Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks.

机构信息

Biomedical Engineering, Faculty of Engineering, Western University, London, ON, N6A 3K7, Canada.

Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada.

出版信息

Sci Rep. 2024 Nov 30;14(1):29794. doi: 10.1038/s41598-024-79390-3.

Abstract

Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.

摘要

功能近红外光谱(fNIRS)测量皮质血流动力学变化,但它无法从丘脑等皮质下结构中收集信息,而丘脑参与了几个关键的功能网络。为了解决这一缺点,我们提出了一种基于机器学习的方法,使用皮质 fNIRS 数据来预测皮质-丘脑功能连接。我们分别将图卷积网络(GCN)应用于从健康成年人和患有早期脑损伤的新生儿获得的两个数据集。每个数据集都包含 fNIRS 连接数据作为预测模型的输入,而来自功能磁共振成像(fMRI)的连接则作为训练目标。与传统方法(如支持向量机和前馈全连接人工神经网络)相比,GCN 模型在识别连接作为二进制分类任务以及回归连接的量化强度方面表现更好。我们还提出在 GCN 核中加入受试者间连接可以提高性能,并且 GCN 模型对 fNIRS 数据中的噪声具有弹性。我们的结果表明,从皮质 fNIRS 记录中识别皮质下活动是可行的。这些发现有可能将 fNIRS 在临床环境中的使用扩展到重症监护患者的大脑监测中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e85b/11608255/97d2f0456a3f/41598_2024_79390_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验