Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA.
Department of Mechanical Engineering, Boston University, 110 Cummington Mall No 101, Boston, MA, 02215, USA.
Sci Rep. 2024 Nov 30;14(1):29826. doi: 10.1038/s41598-024-80502-2.
We present a computational model that integrates mechanobiological regulations, angiogenesis simulations and models natural callus development to simulate bone fracture healing in rodents. The model inputs include atomic force microscopy values and micro-computed tomography on the first-day post osteotomy, which, combined with detailed finite element modeling, enables scrutinizing mechanical and biological interactions in early bone healing and throughout the healing process. The model detailed mesenchymal stem cell migration patterns, which are essential for tissue transformation and vascularization during healing, indicating the vital role of blood supply in the healing process. The model predicted bone healing in rodents (n = 48) over 21 days, matching daily tissue development with histological evidence. The developed computational model successfully predicts tissue formation rates and stiffness, reflecting physiological callus growth, and offers a method to simulate the healing process, potentially extending to humans in the future.
我们提出了一个计算模型,该模型集成了机械生物学调控、血管生成模拟和天然愈伤组织模型,以模拟啮齿动物的骨骨折愈合。该模型的输入包括在骨切开术后第一天的原子力显微镜值和微计算机断层扫描,这与详细的有限元建模相结合,使我们能够在早期骨愈合和整个愈合过程中仔细研究力学和生物学相互作用。该模型详细描述了间充质干细胞的迁移模式,这对于愈合过程中的组织转化和血管生成至关重要,表明血液供应在愈合过程中起着至关重要的作用。该模型预测了啮齿动物(n=48)在 21 天内的骨愈合情况,每天的组织发育与组织学证据相匹配。所开发的计算模型成功预测了组织形成率和刚度,反映了生理愈伤组织的生长,并提供了一种模拟愈合过程的方法,未来可能扩展到人类。