Suppr超能文献

使用外周血炎症标志物预测头颈部鳞状细胞癌对PD-1抑制剂的反应。

Predicting response to PD-1 inhibitors in head and neck squamous cell carcinomas using peripheral blood inflammatory markers.

作者信息

Fang Ruihua, Chen Yi, Huang Bixue, Wang Zhangfeng, Zhu Xiaolin, Liu Dawei, Sun Wei, Chen Lin, Zhang Minjuan, Lyu Kexing, Lei Wenbin

机构信息

Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China.

Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China.

出版信息

Transl Oncol. 2025 Jan;51:102222. doi: 10.1016/j.tranon.2024.102222. Epub 2024 Dec 1.

Abstract

Immune checkpoint inhibitor (ICI) treatment has the potential to induce durable disease remission. However, the current combined positive score (CPS) is insufficient accurate for predicting which patients will benefit from it. In the present study, a real-world retrospective study was conducted on 56 patients of HNSCC who received ICI treatment. Then the treatment that patient received and levels of pre-treatment blood inflammatory markers (NLR, MLR and PLR) were identified to develop a model for predicting immunotherapy response. Notably, the model achieved an area under the curve (AUC) of 0.877 (95 % CI 0.769-0.985) , providing a larger net benefit than the CPS marker (AUC=0.614, 95 % CI 0.466-0.762). Furthermore, the internal validation of the prediction model showed a C-index of 0.835. Patients with high score of the model would get improved PFS than those with low score. Therefore, the prediction model for patients with local advanced or R/M HNSCC receiving ICI treatment, which represented an better efficient prediction of immunotherapy response than CPS marker.

摘要

免疫检查点抑制剂(ICI)治疗有诱导疾病持久缓解的潜力。然而,目前的联合阳性评分(CPS)在预测哪些患者将从该治疗中获益方面不够准确。在本研究中,对56例接受ICI治疗的头颈部鳞状细胞癌(HNSCC)患者进行了一项真实世界回顾性研究。然后确定患者接受的治疗以及治疗前血液炎症标志物(中性粒细胞与淋巴细胞比值(NLR)、单核细胞与淋巴细胞比值(MLR)和血小板与淋巴细胞比值(PLR))水平,以建立一个预测免疫治疗反应的模型。值得注意的是,该模型的曲线下面积(AUC)为0.877(95%可信区间0.769 - 0.985),比CPS标志物(AUC = 0.614,95%可信区间0.466 - 0.762)提供了更大的净效益。此外,预测模型的内部验证显示C指数为0.835。模型高分患者的无进展生存期(PFS)比低分患者有所改善。因此,该针对局部晚期或复发/转移HNSCC接受ICI治疗患者的预测模型,在预测免疫治疗反应方面比CPS标志物更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afa/11647630/08d98158f741/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验