Takefuji Yoshiyasu
Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan.
Brain Behav Immun. 2025 Feb;124:123-124. doi: 10.1016/j.bbi.2024.11.036. Epub 2024 Nov 29.
Skorobogatov et al. developed supervised machine learning models to predict diagnoses and illness states in schizophrenia and bipolar disorder. However, their reliance on bootstrap forests and generalized regressions introduces significant biases in feature importance assessments. This paper highlights the critical distinction between feature importances generated by machine learning and actual associations, which are often model-specific and context-dependent. We underscore the limitations of biased feature importances and advocate for the use of robust statistical methods, such as Chi-squared tests and Spearman's correlation, to reveal true associations. Reassessing findings with these methods will enable more accurate interpretations and reinforce the importance of understanding the limitations inherent in machine learning methodologies.
斯科罗博加托夫等人开发了监督式机器学习模型,以预测精神分裂症和双相情感障碍的诊断结果和疾病状态。然而,他们对自助森林法和广义回归的依赖在特征重要性评估中引入了显著偏差。本文强调了机器学习生成的特征重要性与实际关联之间的关键区别,这些关联通常是特定于模型且依赖于上下文的。我们强调了有偏差的特征重要性的局限性,并提倡使用稳健的统计方法,如卡方检验和斯皮尔曼相关性检验,来揭示真实的关联。用这些方法重新评估研究结果将能够进行更准确的解释,并强化理解机器学习方法固有局限性的重要性。