Suppr超能文献

预测脓毒症诱发低血压患者采用限制性与开放性液体策略的相关属性

PREDICTING SEPSIS-INDUCED HYPOTENSION PATIENT ATTRIBUTES FOR RESTRICTIVE VERSUS LIBERAL FLUID STRATEGY.

作者信息

Upadhyaya Pulakesh, Wang Jeffrey, Mathew Daniel T, Ali Ayman, Tallowin Simon, Gann Eric, Lisboa Felipe A, Schobel Seth A, Elster Eric A, Buchman Timothy G, Dente Christopher J, Kamaleswaran Rishikesan

机构信息

Department of Surgery, Duke School of Medicine, Durham, North Carolina.

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.

出版信息

Shock. 2025 Mar 1;63(3):399-405. doi: 10.1097/SHK.0000000000002506. Epub 2024 Nov 18.

Abstract

Background : Patients with sepsis-induced hypotension are generally treated with a combination of intravenous fluids and vasopressors. The attributes of patients receiving a liberal compared to a restrictive fluid strategy have not been fully characterized. We use machine learning (ML) techniques to identify key predictors of restrictive versus liberal fluids strategy, and the likelihood of receiving each strategy in distinct patient phenotypes. Methods: We performed a retrospective observational study of patients at Emory University Hospital from 2014 to 2021 that were hypotensive, met Sepsis-3 criteria, and received at least 1 L of intravenous crystalloid fluids. We excluded patients with nonseptic etiologies of hypotension. Supervised ML techniques were used to identify key predictors for the two strategies. Additionally, subset analyses were performed on patients with pneumonia, congestive heart failure (CHF), or chronic kidney disease (CKD). Using unsupervised ML techniques, we also identified three distinct sepsis-induced hypotension phenotypes and evaluated their likelihood of receiving either strategy. Results: We identified N = 15,292 patients and randomly split them into training (n = 12,233) and validation (n = 3,059) datasets. XGBoost was the most accurate model (AUC: 0.84) for predicting the strategies. While worse oxygenation was the strongest predictor of utilizing a restrictive fluid strategy, top predictors of a liberal fluid strategy included higher pulse and blood urea nitrogen. In subset analyses, CHF, CKD, and pneumonia were predictive of restrictive fluid strategy. We identified three distinct sepsis-induced hypotension phenotypes: 1) mild organ injury, 2) severe hypoxemia, and 3) renal dysfunction. Conclusions: We identified key predictors of restrictive versus liberal fluids strategy and distinct patient phenotypes for sepsis-induced hypotension.

摘要

背景

脓毒症诱发低血压患者通常采用静脉输液和血管升压药联合治疗。与限制性液体策略相比,接受宽松液体策略的患者特征尚未完全明确。我们使用机器学习(ML)技术来识别限制性与宽松性液体策略的关键预测因素,以及不同患者表型接受每种策略的可能性。

方法

我们对2014年至2021年在埃默里大学医院就诊的低血压患者进行了一项回顾性观察研究,这些患者符合脓毒症-3标准,并接受了至少1升静脉晶体液。我们排除了低血压非脓毒症病因的患者。使用监督式ML技术来识别两种策略的关键预测因素。此外,对患有肺炎、充血性心力衰竭(CHF)或慢性肾脏病(CKD)的患者进行了亚组分析。使用无监督式ML技术,我们还识别出三种不同的脓毒症诱发低血压表型,并评估了它们接受每种策略的可能性。

结果

我们识别出N = 15292例患者,并将他们随机分为训练集(n = 12233)和验证集(n = 3059)。XGBoost是预测这些策略最准确的模型(AUC:0.84)。虽然氧合较差是采用限制性液体策略的最强预测因素,但宽松液体策略的首要预测因素包括较高的脉搏和血尿素氮。在亚组分析中,CHF、CKD和肺炎可预测限制性液体策略。我们识别出三种不同的脓毒症诱发低血压表型:1)轻度器官损伤,2)严重低氧血症,3)肾功能障碍。

结论

我们识别出了脓毒症诱发低血压的限制性与宽松性液体策略的关键预测因素以及不同的患者表型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验