Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña 15006, Spain.
Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, Porto 4050-600, Portugal; Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal.
Mutat Res Genet Toxicol Environ Mutagen. 2024 Nov-Dec;900:503827. doi: 10.1016/j.mrgentox.2024.503827. Epub 2024 Oct 5.
Metal nanoparticles, with gold nanoparticles (AuNP) at the forefront, have gained immense attention due to their unique properties. At the nanoscale, gold exhibits remarkable physical, chemical, optical, and electronic features, making it ideal for a plethora of applications, including bioimaging, sensing, diagnostics, and drug delivery. Despite their promising utility, concerns have arisen regarding the potential adverse effects of AuNP on human health. Research has indicated that these nanoparticles can accumulate in vital organs and interact with proteins and cellular structures, potentially leading to diverse toxicological manifestations. The precise understanding of these nano-bio interactions is further complicated by the varied physicochemical properties of AuNP that influence their biological effects. This review aims to consolidate the current knowledge on the genotoxic effects of AuNP, shedding light on the underlying mechanisms and factors affecting their toxicity. The search was conducted in PubMed and Web of Science databases. Eventually, 32 studies focusing on the genotoxic effects of AuNP were included in the review. In vitro and in vivo findings revealed that AuNP can induce primary DNA damage, oxidative DNA damage, chromosomal damage, alterations in gene expression, and effects on epigenetic regulation. These effects were found to be influenced by various factors, including nanoparticle size, shape, and surface coating. However, the existing literature also highlights the challenges associated with assessing the genotoxicity of nanomaterials (NM), emphasizing the need for standardized and adapted testing protocols. The interference of nanoparticles with conventional toxicity assays may lead to unreliable results; thus, specific methodologies tailored for NM evaluation must be implemented. In conclusion, while AuNP hold tremendous potential for innovative applications, their safety profile remains a critical concern. Continued research is imperative to elucidate the mechanisms of AuNP induced genotoxicity and develop robust testing protocols, ensuring their safe and effective use in diverse applications.
金属纳米粒子,以金纳米粒子(AuNP)为前沿,由于其独特的性质而引起了极大的关注。在纳米尺度上,金表现出显著的物理、化学、光学和电子特性,使其成为生物成像、传感、诊断和药物输送等多种应用的理想选择。尽管它们具有广阔的应用前景,但人们对 AuNP 对人类健康的潜在不利影响表示担忧。研究表明,这些纳米颗粒可以在重要器官中积累,并与蛋白质和细胞结构相互作用,可能导致多种毒理学表现。AuNP 的不同物理化学性质影响其生物效应,这进一步使对这些纳米-生物相互作用的精确理解变得复杂。本综述旨在总结 AuNP 的遗传毒性作用的现有知识,阐明其毒性的潜在机制和影响因素。在 PubMed 和 Web of Science 数据库中进行了搜索。最终,有 32 项研究聚焦于 AuNP 的遗传毒性作用,被纳入本综述。体外和体内研究结果表明,AuNP 可以诱导 DNA 原发性损伤、氧化 DNA 损伤、染色体损伤、基因表达改变和表观遗传调控的影响。这些影响被发现受多种因素的影响,包括纳米颗粒的大小、形状和表面涂层。然而,现有文献也强调了评估纳米材料(NM)遗传毒性的挑战,强调需要制定标准化和适应性的测试方案。纳米颗粒对传统毒性检测的干扰可能导致不可靠的结果;因此,必须实施针对 NM 评估的特定方法。总之,虽然 AuNP 在创新应用方面具有巨大的潜力,但它们的安全状况仍然是一个关键问题。为了阐明 AuNP 诱导遗传毒性的机制并开发强大的测试方案,以确保其在各种应用中的安全有效使用,需要继续开展研究。