Suppr超能文献

基于智能眼动分析与评估系统的阿尔茨海默病患者眼动特征分析

Analysis of eye movement features in patients with Alzheimer's disease based on intelligent eye movement analysis and evaluation system.

作者信息

Tao Meichun, Cui Lei, Du Yuanyuan, Liu Xiaotang, Wang Can, Zhao Jing, Qiao Huimin, Li Zhenzhong, Dong Mei

机构信息

Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

The Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China.

出版信息

J Alzheimers Dis. 2024 Dec;102(4):1249-1259. doi: 10.1177/13872877241297416. Epub 2024 Dec 1.

Abstract

BACKGROUND

The early identification of Alzheimer's disease (AD) benefits patients, so creating a simple and convenient method is crucial for diagnosing early symptoms.

OBJECTIVE

To offer a potential approach for the early detection of both AD and mild cognitive impairment (MCI).

METHODS

Eye movement data from 66 patients were divided into three groups, including healthy control group (HC), MCI group, and AD group. We searched for parameters that can detect MCI at an early stage and drew receiver operating characteristic (ROC) curves. The correlation between eye movement parameters and cognitive scores was analyzed.

RESULTS

The MCI group differed from the HC group in error correction rate of antisaccade ( = 0.008) and total offset degrees (>4°) ( = 0.011) of lateral fixation. The AD group had different overlap prosaccade accuracy ( = 0.025), latency ( = 0.009) and average completion time ( = 0.015), gap prosaccade latency ( = 0.005) and average completion time ( = 0.005), antisaccade accuracy ( = 0.006), error correction rate (  0.001) and average saccade velocity ( = 0.035), and lateral fixation accuracy ( = 0.018), total offset degrees (>4°) ( = 0.041) compared to the HC group. The AD group differed significantly from the MCI group in accuracy ( = 0.001) and error correction rate ( = 0.044) of antisaccades, the latency ( = 0.009) and average completion time ( = 0.025) of overlap prosaccade and the latency ( = 0.038) of gap prosaccade, these parameters can serve as indicators to monitor the progress of the disease. Lateral fixation combined with antisaccade was more conducive to identifying MCI patients with the area under the ROC curve of 0.837. Most eye movement parameters had a light to moderate correlation with cognitive scores.

CONCLUSIONS

Eye movements can be used for early identification of MCI/AD patients and to monitor disease progression.

摘要

背景

早期识别阿尔茨海默病(AD)对患者有益,因此创建一种简单便捷的方法对于诊断早期症状至关重要。

目的

提供一种早期检测AD和轻度认知障碍(MCI)的潜在方法。

方法

将66例患者的眼动数据分为三组,包括健康对照组(HC)、MCI组和AD组。我们寻找能够早期检测MCI的参数,并绘制受试者工作特征(ROC)曲线。分析眼动参数与认知评分之间的相关性。

结果

MCI组与HC组在反扫视的错误纠正率(P = 0.008)和横向注视的总偏移度数(>4°)(P = 0.011)方面存在差异。AD组与HC组相比,在重叠前扫视准确性(P = 0.025)、潜伏期(P = 0.009)和平均完成时间(P = 0.015)、间隙前扫视潜伏期(P = 0.005)和平均完成时间(P = 0.005)、反扫视准确性(P = 0.006)、错误纠正率(P = 0.001)和平均扫视速度(P = 0.035)以及横向注视准确性(P = 0.018)、总偏移度数(>4°)(P = 0.041)方面存在差异。AD组与MCI组在反扫视的准确性(P = 0.001)和错误纠正率(P = 0.044)、重叠前扫视的潜伏期(P = 0.009)和平均完成时间(P = 0.025)以及间隙前扫视的潜伏期(P = 0.038)方面存在显著差异,这些参数可作为监测疾病进展的指标。横向注视与反扫视相结合更有利于识别MCI患者,ROC曲线下面积为0.837。大多数眼动参数与认知评分呈轻度至中度相关。

结论

眼动可用于早期识别MCI/AD患者并监测疾病进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验