Harte N C, Obrist D, Versluis M, Jebbink E Groot, Caversaccio M, Wimmer W, Lajoinie G
Department of Otorhinolaryngology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Exp Therm Fluid Sci. 2024 Dec;159:None. doi: 10.1016/j.expthermflusci.2024.111296.
Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.
尽管三维粒子图像测速技术(PIV)近年来取得了进展,但在测量小尺度三维流动,特别是具有大动态范围的流动时,仍然存在挑战。本研究提出了一种专为振荡流定制的扫描式三维PIV系统,该系统能够分辨出小于轴向流振幅百分之一的横向流。该系统被应用于可视化毫米级直管、环形管和扭曲管中的横向流。两种PIV分析技术,即频闪PIV和半拉格朗日PIV,能够对净运动以及时间分辨的轴向和横向速度进行量化。实验结果与在实验模型的数字化表示中进行的计算流体动力学(CFD)模拟结果紧密吻合。所提出的方法允许对微观尺度以下系统中的周期性流动进行研究,并且特别适用于由于其复杂的多物理性质而无法放大的应用。