Suppr超能文献

巴西南部地区缺血性心脏病死亡率预测因素分析:一项基于地理机器学习的研究。

Analysis of the Predictors of Mortality from Ischemic Heart Diseases in the Southern Region of Brazil: A Geographic Machine-Learning-Based Study.

作者信息

de Carvalho Dutra Amanda, Silva Lincoln Luis, Borba Isadora Martins, Dos Santos Amanda Gubert Alves, Marquezoni Diogo Pinetti, Beltrame Matheus Henrique Arruda, do Lago Franco Rogério, Hatoum Ualid Saleh, Miyoshi Juliana Harumi, Leandro Gustavo Cezar Wagner, Bitencourt Marcos Rogério, Nihei Oscar Kenji, Vissoci João Ricardo Nickenig, de Andrade Luciano

机构信息

Graduation Program in Health Sciences, State University of Maringa, Parana, Brazil.

Department of Medicine, State University of Maringa, Parana, Brazil.

出版信息

Glob Heart. 2024 Nov 27;19(1):89. doi: 10.5334/gh.1371. eCollection 2024.

Abstract

BACKGROUND

Mortality due to ischemic heart disease (IHD) is heterogeneously distributed globally, and identifying the sites most affected by it is essential in developing strategies to mitigate the impact of the disease, despite the complexity resulting from the great diversity of variables involved.

OBJECTIVE

To analyze the predictability of IHD mortality using machine learning (ML) techniques in combination with geospatial analysis in southern Brazil.

METHODS

Ecological study using secondary and retrospective data on mortality due to ischemic heart disease (IHD) obtained from the Mortality Information Systems (SIM-DATASUS) de 2018 a 2022, covering 1,191 municipalities in the states of Paraná (399), Santa Catarina (295), and Rio Grande do Sul (497). Ordinary Least Squares Regression (OLS), Geographically Weighted Regression (GWR), Random Forest (RF), and Geographically Weighted Random Forest (GWRF) analyses were performed to verify the model with the best performance capable of identifying the most affected sites by the disease based on a set of predictors composed by variables of procedures and access to health.

RESULTS

In the analyzed period, there were 59,093 deaths, 65% of which were men, 82.7% were white, and 72.8% occurred between 60 and 70 years of age. Ischemic heart disease presented the highest mortality rates in the northwest and north regions of the state of Paraná, and in the central-east, southwest and southeast regions of Rio Grande do Sul, the latter state accounting for 41% of total deaths. The GWRF presented the best performance with R = 0.983 and AICc = 2298.4, RMSE: 3.494 and the most important variables of the model in descending order were electrocardiograph rate, cardiac catheterization rate, access index to hemodynamics, access index of pre-hospital mobile units, cardiologists rate, myocardial scintigraphy rate, stress test rate, and stress echocardiogram rate.

CONCLUSION

The GWRF identified spatial heterogeneity in the variation of geographic predictors, contrasting the limitation of linear regression models. The findings showed patterns of vulnerability in southern Brazil, suggesting the formulation of health policies to improve access to diagnostic and therapeutic resources, with the potential to reduce IHD mortality.

摘要

背景

缺血性心脏病(IHD)导致的死亡率在全球分布不均,尽管涉及的变量种类繁多会带来复杂性,但确定受其影响最严重的地区对于制定减轻该疾病影响的策略至关重要。

目的

在巴西南部结合地理空间分析,使用机器学习(ML)技术分析缺血性心脏病死亡率的可预测性。

方法

采用生态学研究,使用从2018年至2022年的死亡信息系统(SIM-DATASUS)获得的关于缺血性心脏病(IHD)死亡率的二手回顾性数据,涵盖巴拉那州(399个)、圣卡塔琳娜州(295个)和南里奥格兰德州(497个)的1191个市。进行普通最小二乘法回归(OLS)、地理加权回归(GWR)、随机森林(RF)和地理加权随机森林(GWRF)分析,以验证基于由医疗程序变量和医疗可及性组成的一组预测因子,能够识别受该疾病影响最严重地区的性能最佳的模型。

结果

在分析期间,共有59,093人死亡,其中65%为男性,82.7%为白人,72.8%发生在60至70岁之间。缺血性心脏病在巴拉那州的西北部和北部地区以及南里奥格兰德州的中东部、西南部和东南部地区呈现出最高的死亡率,后一个州占总死亡人数的41%。GWRF表现最佳,R = 0.983,AICc = 2298.4,RMSE:3.494,模型中最重要的变量按降序排列为心电图率、心脏导管插入率、血流动力学可及指数、院前移动单元可及指数、心脏病专家率、心肌闪烁扫描率、压力测试率和压力超声心动图率。

结论

GWRF识别出地理预测因子变化中的空间异质性,这与线性回归模型的局限性形成对比。研究结果显示了巴西南部的脆弱性模式,表明应制定卫生政策以改善诊断和治疗资源的可及性,从而有可能降低缺血性心脏病死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b4/11606396/7db4e9f11bf4/gh-19-1-1371-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验