Suppr超能文献

论基尼系数与偏度之间的关系。

On the Relationship Between the Gini Coefficient and Skewness.

作者信息

Lian Meng, Chen Long, Hui Cang, Zhu Fuyuan, Shi Peijian

机构信息

Co-Innovation Centre for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Bamboo Research Institute, College of Life Sciences Nanjing Forestry University Nanjing China.

Department of Mathematical Sciences, Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa.

出版信息

Ecol Evol. 2024 Nov 28;14(12):e70637. doi: 10.1002/ece3.70637. eCollection 2024 Dec.

Abstract

Skewness, a measure of the asymmetry of a distribution, is frequently employed to reflect a biologically important property. Another statistic, the Gini coefficient (GC), originally used to measure economic inequality, has been validated in measuring the inequality of biological size distributions. Given that the GC and skewness control overlapping domains and interact with each other, researchers are perplexed by their relationship (varying with the biological [organ, tissue or cell] size distributions) and use both of them together to provide a more complete picture of the data. This study provides analytical forms of the GC for biological size distributions, including two-parameter Weibull, uniform, normal, two-parameter lognormal, gamma, three-parameter Weibull, three-parameter lognormal, and three-parameter gamma distributions. Two empirical data sets and simulation data sets were used to clarify the GC-skewness relationships under different distributions. For the aforementioned distributions, the GC-skewness relationships can be divided into three types: (i) for a symmetrical distribution, the skewness is 0, and the GC ranges from 0.56 to 0.58 multiplied by the standard deviation divided by the mean irrespective of its relationship with the skewness; (ii) for an asymmetric distribution with a zero threshold, the GC is a monotonously increasing function of the skewness, and the two measures are equivalent; (iii) for an asymmetric distribution with a non-zero threshold, the GC is determined by the skewness and an additional correction factor. We showed the differences in improving the accuracy of GC calculations based on small-sample adjustments among various calculation methods, including the polygon (trapezoidal set) area method and the rotated Lorenz curve method. The present study turns the GC into a property of the distribution and offers a clear understanding for the GC-skewness relationship. This work provides insights into selecting and using the GC to measure inequality in ecological data, facilitating more accurate and meaningful analyses.

摘要

偏度是衡量分布不对称性的指标,常用于反映生物学上的重要特性。另一个统计量基尼系数(GC)最初用于衡量经济不平等,现已被证实可用于衡量生物大小分布的不平等性。鉴于GC和偏度控制着重叠的领域且相互作用,研究人员对它们之间的关系(随生物[器官、组织或细胞]大小分布而变化)感到困惑,并同时使用两者来更全面地了解数据。本研究提供了生物大小分布的GC分析形式,包括双参数威布尔分布、均匀分布、正态分布、双参数对数正态分布、伽马分布、三参数威布尔分布、三参数对数正态分布和三参数伽马分布。使用两个经验数据集和模拟数据集来阐明不同分布下的GC - 偏度关系。对于上述分布,GC - 偏度关系可分为三种类型:(i)对于对称分布,偏度为0,GC范围为0.56至0.58乘以标准差除以均值,与偏度无关;(ii)对于阈值为零的不对称分布,GC是偏度的单调递增函数,且这两个指标等价;(iii)对于阈值不为零的不对称分布,GC由偏度和一个额外的校正因子决定。我们展示了在各种计算方法(包括多边形(梯形集)面积法和旋转洛伦兹曲线法)的小样本调整基础上提高GC计算准确性的差异。本研究将GC转变为分布的一个特性,并对GC - 偏度关系提供了清晰的理解。这项工作为选择和使用GC来衡量生态数据中的不平等性提供了见解,有助于进行更准确和有意义的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206e/11604574/9c76ba45a883/ECE3-14-e70637-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验