Deng Yuheng, Wong Yen Wen, Teh Letitia Kai Yue, Wang Qi, Sun Weifeng, Chern Wen Kwang, Oh Joo Tien, Chen Zhong
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
SP Group - NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
Mater Horiz. 2025 Feb 17;12(4):1323-1333. doi: 10.1039/d4mh01414f.
Epoxy resins are widely used as dielectric materials in electrical and electronic systems. However, the trend of miniaturization of electronic devices and increasing power output of electrical equipment have created new challenges for dielectric materials, necessitating low dielectric constants, high breakdown strength, and high electrical resistivity. This study introduces three molecular modifications to epoxy resin systems using facile synthesis procedures, including modifiers with bulky groups and crosslinking potential to reduce the dielectric constant while enhancing mechanical and thermal reliability, along with deep traps to increase breakdown strength. The modified epoxy resins exhibit significant improvements. Notably, epoxy/amine resin grafted with only 0.5 wt% maleic anhydride demonstrates a 30% decrease in dielectric constant, a 17-fold increase in volume resistivity, an increase in dielectric breakdown strength from 61.5 to 73.4 kV mm, and a rise in tensile strength from 69.7 to 75.4 MPa. Other modifiers also show enhancements in dielectric, mechanical, thermal, and water uptake properties. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) are employed to reveal the chemical structure of the modified epoxy resin and the distribution of modifiers. Results confirm successful grafting and exceptional dispersion without agglomeration. This study demonstrates that small amounts of chemical modifiers can significantly enhance epoxy resin performance. The resulting materials can meet the requirements for next-generation dielectric materials while maintaining low production costs.
环氧树脂在电气和电子系统中被广泛用作介电材料。然而,电子设备小型化的趋势以及电气设备功率输出的增加给介电材料带来了新的挑战,这就需要低介电常数、高击穿强度和高电阻率。本研究采用简便的合成方法对环氧树脂体系进行了三种分子改性,包括具有庞大基团和交联潜力的改性剂以降低介电常数,同时提高机械和热可靠性,以及引入深陷阱以提高击穿强度。改性环氧树脂表现出显著的改进。值得注意的是,仅接枝0.5 wt%马来酸酐的环氧/胺树脂的介电常数降低了30%,体积电阻率提高了17倍,介电击穿强度从61.5 kV/mm提高到73.4 kV/mm,拉伸强度从69.7 MPa提高到75.4 MPa。其他改性剂在介电、机械、热和吸水性方面也有增强。采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和能量色散X射线光谱(EDX)来揭示改性环氧树脂的化学结构和改性剂的分布。结果证实了成功接枝且分散良好,没有团聚现象。本研究表明,少量的化学改性剂可以显著提高环氧树脂的性能。所得材料在保持低生产成本的同时能够满足下一代介电材料的要求。