Suppr超能文献

用于食品真实性检测的无扩增核酸检测的机器学习辅助双通道微滴式CRISPR/Cas12a生物传感器

Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing.

作者信息

Zhao Zhiying, Wang Roumeng, Yang Xinqi, Jia Jingyu, Zhang Qiang, Ye Shengying, Man Shuli, Ma Long

机构信息

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.

College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin 300457, China.

出版信息

ACS Nano. 2024 Dec 10;18(49):33505-33519. doi: 10.1021/acsnano.4c10823. Epub 2024 Dec 2.

Abstract

The development of novel detection technology for meat species authenticity is imperative. Here, we developed a machine learning-supported, dual-channel biosensor-in-microdroplet platform for meat species authenticity detection named CC-drop (RISPR/Cas12a digital single-molecule microdroplet biosensor). This strategy allowed us to quickly identify and analyze animal-derived components in foods. This biosensor was enabled by CRISPR/Cas12a-based fluorescence lighting-up detection, and the nucleic acid signals can be recognized by a Cas12a-crRNA binary complex to trigger the -cleavage of any by-stander reporter single-stranded (ss) DNA, in which nucleic acid signals can be converted and amplified to fluorescent readouts. The ultralocalized microdroplet reactor was constructed by reducing the reaction volume from up to picoliter to accommodate the aforementioned reaction to further enhance the sensitivity to even render an amplification-free nucleic acid detection. Moreover, we established a smartphone App coupled with a random forest machine learning model based on parameters such as area, fluorescent intensity, and counting number to ensure the accuracy of image recording and processing. The sample-to-result time was within 80 min. Importantly, the proposed biosensor was able to accurately detect the (pork-specific) and (duck-specific) genes in deep processed meat-derived foods that usually had truncated DNA, and the results were more robust and practical than conventional real-time polymerase chain reaction after a side-by-side comparison. All in all, the proposed biosensor can be expected to be used for rapid food authenticity and other nucleic acid detections in the future.

摘要

开发用于肉类物种鉴定的新型检测技术势在必行。在此,我们开发了一种机器学习支持的微滴中双通道生物传感器平台用于肉类物种鉴定,名为CC-drop(基于CRISPR/Cas12a的数字单分子微滴生物传感器)。该策略使我们能够快速识别和分析食品中的动物源性成分。这种生物传感器通过基于CRISPR/Cas12a的荧光点亮检测实现,核酸信号可被Cas12a-crRNA二元复合物识别,从而触发任何旁观者报告单链(ss)DNA的切割,其中核酸信号可被转换并放大为荧光读数。通过将反应体积减小至皮升级别的超局部微滴反应器,以适应上述反应,进一步提高灵敏度,甚至实现无扩增核酸检测。此外,我们基于面积、荧光强度和计数数量等参数建立了一个与随机森林机器学习模型相结合的智能手机应用程序,以确保图像记录和处理的准确性。从样品到得出结果的时间在80分钟内。重要的是,所提出的生物传感器能够准确检测深加工肉类衍生食品中通常具有截短DNA的(猪肉特异性)和(鸭肉特异性)基因,并且在并排比较后,结果比传统实时聚合酶链反应更可靠、更实用。总而言之,所提出的生物传感器有望在未来用于快速食品鉴定和其他核酸检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验