Wettstadt Sarah, Marcos-Torres Francisco J, Otero-Asman Joaquín R, García-Puente Alicia, Ortega Álvaro, Llamas María A
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.
Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain.
PLoS Biol. 2024 Dec 2;22(12):e3002920. doi: 10.1371/journal.pbio.3002920. eCollection 2024 Dec.
Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor. TBDTs contain an extra N-terminal domain known as signaling domain (SD) required for the signal transfer activity of these receptors. In the current CSS model, presence of the signal allows the interaction between the TBDT and the anti-σ factor in the periplasm, promoting the proteolysis of the anti-σ factor and in turn the σECF-dependent transcription of response genes, including the TBDT gene. However, recent evidence shows that σECF activity does not depend on this interaction, suggesting that the contact between these 2 proteins fulfills a different role. Using the P. aeruginosa Fox CSS system as model, we show here that the SD of the FoxA TBDT already interacts with the C-terminal domain of the FoxR anti-σ factor in absence of the signal. This interaction protects FoxR from proteolysis in turn preventing transcription of σFoxI-dependent genes. By structural modeling of the FoxR/FoxASD interaction, we have identified the interaction sites between these 2 proteins and provide the molecular details of this interaction. We furthermore show that to exert this protective role, FoxA undergoes proteolytic cleavage, denoting a change in the paradigm of the current CSS model.
像人类病原体铜绿假单胞菌这样的竞争性细菌可以从不同的铁载体中获取铁,这些铁载体通常通过外膜中依赖TonB的受体(TBDRs)内化。底物的存在会促进TBDRs的产生。这种调节通常需要一种称为细胞表面信号传导(CSS)的信号传递途径,该途径涉及TBDR本身,其也作为传感器发挥作用(因此被称为TBDT)、一种与细胞质膜结合的抗σ因子和一种胞外功能σ(σECF)因子。TBDTs包含一个额外的N端结构域,称为信号结构域(SD),是这些受体信号传递活性所必需的。在当前的CSS模型中,信号的存在允许TBDT与周质中的抗σ因子相互作用,促进抗σ因子的蛋白水解,进而促进包括TBDT基因在内的响应基因的σECF依赖性转录。然而,最近的证据表明,σECF活性并不依赖于这种相互作用,这表明这两种蛋白质之间的接触发挥着不同的作用。以铜绿假单胞菌Fox CSS系统为模型,我们在此表明,在没有信号的情况下,FoxA TBDT的SD已经与FoxR抗σ因子的C端结构域相互作用。这种相互作用保护FoxR不被蛋白水解,进而阻止σFoxI依赖性基因的转录。通过对FoxR/FoxASD相互作用的结构建模,我们确定了这两种蛋白质之间的相互作用位点,并提供了这种相互作用的分子细节。我们还表明,为了发挥这种保护作用,FoxA会发生蛋白水解切割,这表明当前CSS模型的范式发生了变化。