Costa Cristiano, Scarpazza Cristina, Filippini Nicola
Padova Neuroscience Center, Università degli Studi di Padova, Padua 35131, Italy
Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua 35131, Italy.
J Neurosci. 2025 Jan 29;45(5):e0872242024. doi: 10.1523/JNEUROSCI.0872-24.2024.
Predictive coding mechanisms facilitate detection and perceptual recognition, thereby influencing recognition judgements, and, broadly, perceptual decision-making. The anterior insula (AI) has been shown to be involved in reaching a decision about discrimination and recognition, as well as to coordinate brain circuits related to reward-based learning. Yet, experimental studies in the context of recognition and decision-making, targeting this area and based on formal trial-by-trial predictive coding computational quantities, are sparse. The present study goes beyond previous investigations and provides a predictive coding computational account of the role of the AI in recognition-related decision-making, by leveraging Zaragoza-Jimenez et al. (2023) open fMRI dataset (17 female, 10 male participants) and computational modeling, characterized by a combination of view-independent familiarity learning and contextual learning. Using model-based fMRI, we show that, in the context a two-option forced-choice identity recognition task, the AI engages in feature-level (i.e., view-independent familiarity) updating and error signaling processes and context-level familiarity updating to reach a recognition judgment. Our findings highlight that an important functional property of the AI is to update the level of familiarity of a given stimulus while also adapting to task-relevant, contextual information. Ultimately, these expectations, combined with input visual signals through reciprocally interconnected feedback and feedforward processes, facilitate recognition judgments, thereby guiding perceptual decision-making.
预测编码机制有助于检测和知觉识别,从而影响识别判断,广义而言,还影响知觉决策。已有研究表明,前脑岛(AI)参与做出辨别和识别的决策,并协调与基于奖励的学习相关的脑回路。然而,针对该区域、基于正式的逐次试验预测编码计算量的识别和决策背景下的实验研究却很少。本研究超越了以往的调查,通过利用萨拉戈萨-希门尼斯等人(2023年)的公开功能磁共振成像数据集(17名女性、10名男性参与者)和计算建模,提供了一个关于前脑岛在识别相关决策中作用的预测编码计算解释,其特点是结合了视图独立的熟悉度学习和情境学习。使用基于模型的功能磁共振成像,我们表明,在二选一强制选择身份识别任务的背景下,前脑岛参与特征级(即视图独立的熟悉度)更新和错误信号传递过程以及情境级熟悉度更新,以做出识别判断。我们的研究结果强调,前脑岛的一个重要功能特性是更新给定刺激的熟悉度水平,同时还适应与任务相关的情境信息。最终,这些预期与通过相互连接的反馈和前馈过程输入的视觉信号相结合,促进识别判断,从而指导知觉决策。