Suppr超能文献

对嗜铬细胞瘤和副神经节瘤肿瘤使用旁系亲属网络可提供关于全基因组DNA甲基化的新见解。

Using parenclitic networks on phaeochromocytoma and paraganglioma tumours provides novel insights on global DNA methylation.

作者信息

Brempou Dimitria, Montibus Bertille, Izatt Louise, Andoniadou Cynthia L, Oakey Rebecca J

机构信息

Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.

Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK.

出版信息

Sci Rep. 2024 Dec 2;14(1):29958. doi: 10.1038/s41598-024-81486-9.

Abstract

Despite the prevalence of sequencing data in biomedical research, the methylome remains underrepresented. Given the importance of DNA methylation in gene regulation and disease, it is crucial to address the need for reliable differential methylation methods. This work presents a novel, transferable approach for extracting information from DNA methylation data. Our agnostic, graph-based pipeline overcomes the limitations of commonly used differential methylation techniques and addresses the "small n, big k" problem. Pheochromocytoma and Paraganglioma (PPGL) tumours with known genetic aetiologies experience extreme hypermethylation genome wide. To highlight the effectiveness of our method in candidate discovery, we present the first phenotypic classifier of PPGLs based on DNA methylation achieving 0.7 ROC-AUC. Each sample is represented by an optimised parenclitic network, a graph representing the deviation of the sample's DNA methylation from the expected non-aggressive patterns. By extracting meaningful topological features, the dimensionality and, hence, the risk of overfitting is reduced, and the samples can be classified effectively. By using an explainable classification method, in this case logistic regression, the key CG loci influencing the decision can be identified. Our work provides insights into the molecular signature of aggressive PPGLs and we propose candidates for further research. Our optimised parenclitic network implementation improves the potential utility of DNA methylation data and offers an effective and complete pipeline for studying such datasets.

摘要

尽管测序数据在生物医学研究中普遍存在,但甲基化组的代表性仍然不足。鉴于DNA甲基化在基因调控和疾病中的重要性,解决对可靠的差异甲基化方法的需求至关重要。这项工作提出了一种从DNA甲基化数据中提取信息的新颖且可转移的方法。我们基于图的无偏管道克服了常用差异甲基化技术的局限性,并解决了“小n,大k”问题。具有已知遗传病因的嗜铬细胞瘤和副神经节瘤(PPGL)肿瘤在全基因组范围内经历极端的高甲基化。为了突出我们的方法在候选发现中的有效性,我们提出了首个基于DNA甲基化的PPGL表型分类器,其ROC-AUC达到0.7。每个样本由一个优化的旁系网络表示,该图表示样本的DNA甲基化与预期的非侵袭性模式的偏差。通过提取有意义的拓扑特征,降低了维度,从而降低了过拟合的风险,并可以有效地对样本进行分类。通过使用可解释的分类方法,在这种情况下是逻辑回归,可以识别影响决策的关键CG位点。我们的工作深入了解了侵袭性PPGL的分子特征,并提出了进一步研究的候选对象。我们优化的旁系网络实现提高了DNA甲基化数据的潜在效用,并为研究此类数据集提供了一个有效且完整的管道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7f7/11612305/b03f37b078d8/41598_2024_81486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验