文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Unveiling vital biomarkers and immune infiltration profiles in endoplasmic reticulum stress following spinal cord injury.

作者信息

Zhang Yunpeng, Tang Xiaoming, Dai Jian, Li Yao, Ma Jian

机构信息

Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China.

出版信息

Sci Rep. 2024 Dec 2;14(1):29981. doi: 10.1038/s41598-024-81844-7.


DOI:10.1038/s41598-024-81844-7
PMID:39623003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11612299/
Abstract

Spinal cord injury (SCI) is a profound affliction of the central nervous system that often remains inadequately addressed. Prior research has indicated that endoplasmic reticulum stress (ERS), associated with apoptotic signaling, plays a part in subsequent injuries post-SCI. However, the exact mechanisms are still unclear. ERS-related genes and SCI-associated datasets were sourced from the Genecard and GEO databases. We identified 68 ERSDEGs and pinpointed 6 marker genes vital for SCI diagnosis (CYBB, PRDX6, PTGS1, GCH1, TLR2 and PIK3CG) which were all upregulated in SCI based on bioinformatics and qRT-PCR. The nomogram exhibited that these genes could effectively predict the occurrence of SCI. Functional analysis revealed the potential roles of these genes was closely related to neuron cells and immune response. Immune infiltration research underscored the substantial roles of macrophage and CD56 dim NK cells in SCI. The ceRNA network analysis further revealed the complex interplay among marker genes, lncRNAs and miRNAs in SCI. We screened six marker genes with great diagnostic value, and found that these genes may affect the occurrence of SCI by affecting the immune response and recovery of neurons.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/643ae6c5febd/41598_2024_81844_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/9e730c018b72/41598_2024_81844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/fddc46505e75/41598_2024_81844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/e7e1c03e403f/41598_2024_81844_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/612475660297/41598_2024_81844_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/3e0026a3f981/41598_2024_81844_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/3daa8551e993/41598_2024_81844_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/1ec0d12d951c/41598_2024_81844_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/c29535996c28/41598_2024_81844_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/89c95d0b10e2/41598_2024_81844_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/a755de876d7c/41598_2024_81844_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/643ae6c5febd/41598_2024_81844_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/9e730c018b72/41598_2024_81844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/fddc46505e75/41598_2024_81844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/e7e1c03e403f/41598_2024_81844_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/612475660297/41598_2024_81844_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/3e0026a3f981/41598_2024_81844_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/3daa8551e993/41598_2024_81844_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/1ec0d12d951c/41598_2024_81844_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/c29535996c28/41598_2024_81844_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/89c95d0b10e2/41598_2024_81844_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/a755de876d7c/41598_2024_81844_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd8/11612299/643ae6c5febd/41598_2024_81844_Fig11_HTML.jpg

相似文献

[1]
Unveiling vital biomarkers and immune infiltration profiles in endoplasmic reticulum stress following spinal cord injury.

Sci Rep. 2024-12-2

[2]
Biomarkers mining for spinal cord injury based on integrated multi-transcriptome expression profile data.

J Orthop Surg Res. 2021-4-16

[3]
Analysis and validation of programmed cell death genes associated with spinal cord injury progression based on bioinformatics and machine learning.

Int Immunopharmacol. 2025-3-6

[4]
Construction and analysis of a spinal cord injury competitive endogenous RNA network based on the expression data of long noncoding, micro‑ and messenger RNAs.

Mol Med Rep. 2019-2-22

[5]
Identification and bioinformatics analysis of genes associated with pyroptosis in spinal cord injury of rat and mouse.

Sci Rep. 2024-6-18

[6]
Bioinformatics-based diagnosis and evaluation of several pivotal genes and pathways associated with immune infiltration at different time points in spinal cord injury.

Biotechnol Genet Eng Rev. 2024-4

[7]
of Potential Noncoding RNAs Related to Spinal Cord Injury Based on Competing Endogenous RNAs.

Mol Neurobiol. 2024-12

[8]
Integrated bioinformatics analysis identified cuproptosis-related hub gene Mpeg1 as potential biomarker in spinal cord injury.

Sci Rep. 2025-1-15

[9]
Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury.

Gene. 2019-10-26

[10]
Building endoplasmic reticulum stress-related LncRNAs signatures of lung adenocarcinoma.

J Gene Med. 2024-8

引用本文的文献

[1]
Mechanistic insights into Nrf2-driven pathogenesis and therapeutic targeting in spinal cord injury.

Front Immunol. 2025-7-10

本文引用的文献

[1]
Exploring the immunological role and prognostic potential of PPM1M in pan-cancer.

Medicine (Baltimore). 2023-3-24

[2]
ggalluvial: Layered Grammar for Alluvial Plots.

J Open Source Softw. 2020

[3]
Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation.

Cell Biosci. 2023-1-9

[4]
Exosomes derived from M2 Macrophages Improve Angiogenesis and Functional Recovery after Spinal Cord Injury through HIF-1α/VEGF Axis.

Brain Sci. 2022-9-29

[5]
ER-Phagy: Quality and Quantity Control of the Endoplasmic Reticulum by Autophagy.

Cold Spring Harb Perspect Biol. 2023-1-3

[6]
MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms.

Ther Adv Cardiovasc Dis. 2022

[7]
Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury.

Signal Transduct Target Ther. 2022-3-2

[8]
Economic impact of traumatic spinal cord injuries in the United States.

Neuroimmunol Neuroinflamm. 2019

[9]
Assessing single-cell transcriptomic variability through density-preserving data visualization.

Nat Biotechnol. 2021-6

[10]
The Interplay of WNT and PPARγ Signaling in Vascular Calcification.

Cells. 2020-12-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索