Liu Yongxu, Song Jiangnan, Liu Zhen, Chen Jialin, Wang Dejuan, Zhi Hui, Tang Jiebin, Zhang Yafang, Li Ningbo, Zhou Weijia, An Meng, Liu Hong, Xue Guobin
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
Nanomicro Lett. 2024 Dec 3;17(1):81. doi: 10.1007/s40820-024-01577-0.
Harvesting the immense and renewable osmotic energy with reverse electrodialysis (RED) technology shows great promise in dealing with the ever-growing energy crisis. One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity. Herein, polyelectrolyte hydrogels (channel width, 2.2 nm) with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale (radius, 0.1 mm). The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers. With real seawater and river water, the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m (per unit total membrane area), much better than state-of-the-art membranes. This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes, owning broad application prospects in the fields of osmotic energy collection, electrodialysis, flow battery and so on.
利用反向电渗析(RED)技术获取巨大的可再生渗透能,在应对日益严峻的能源危机方面展现出巨大潜力。一个关键挑战是在提高膜渗透性和选择性之间实现更好的平衡,从而提高输出功率密度。在此,具有固有高离子电导率的聚电解质水凝胶(通道宽度为2.2纳米)已被证明,当被限制在横向尺寸甚至达到亚毫米级(半径为0.1毫米)的圆柱形阳极氧化铝孔中时,能够实现优异的选择性离子转移。通过纤维素纳米纤维,还可以进一步提高抗溶胀水凝胶的膜渗透性。使用真实的海水和河水,代表RED系统重复单元的三室电池的输出功率密度可达8.99 W/m²(基于单位总膜面积),远优于现有技术的膜。这项工作为制备基于聚电解质水凝胶的离子选择性膜提供了一种新策略,在渗透能收集、电渗析、液流电池等领域具有广阔的应用前景。