Li Fan, Liu Xin, Yang Jiawei, Wang Xin-Ye, Yang Yi-Chang, Ma Ni, Chen Ling, Wu Li-Ming
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, People's Republic of China.
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China.
Small. 2025 Jan;21(4):e2409524. doi: 10.1002/smll.202409524. Epub 2024 Dec 2.
Herein an extremely low (0.32‒0.25 WmK) and glassy temperature-dependence (300-600 K) of lattice thermal conductivity (κ) in a monoclinic KAgSe is reported. It is found that the effective carrier delocalization, contributed by the perfect p-d hybridization paradigm, can efficiently facilitate the spatial transfer of electron cloud perturbations induced by the anisotropic thermal vibrations of Ag4 atoms, thereby favoring long-range Se‒Se correlations. The localized rattling-like vibration of Ag4 atoms induce short phonon lifetimes, large scattering phase space, and then a low particle-like propagation. While the correlated interactions mediated competitive expressions between bubble diagrams and loop diagrams can suppress the generation of wavelike phonons from off-diagonal coupling. Ultimately, the AgSe structural units can enable the dual confinement of both the particle-like propagation of phonons and wavelike tunneling of coherence. The study highlights that the correlated AgSe coordination units can simultaneously target particle-like and wavelike phonons and then reduce their contribution to the κ by mediating long-range transfer of charge polarization. These fundamental advances will advance the design of crystalline materials with tailored thermal properties.
本文报道了单斜晶系KAgSe中极低的(0.32‒0.25 WmK)且玻璃态的晶格热导率(κ)随温度的变化关系(300 - 600 K)。研究发现,由完美的p-d杂化模式促成的有效载流子离域化能够有效地促进由Ag4原子的各向异性热振动所引起的电子云微扰的空间转移,从而有利于长程的Se-Se关联。Ag4原子的局域化类似晃动的振动导致声子寿命短、散射相空间大,进而导致低的类粒子传播。而由泡利图和圈图之间的竞争表达式介导的关联相互作用能够抑制非对角耦合产生的类波声子。最终,AgSe结构单元能够实现对声子的类粒子传播和相干性的类波隧穿的双重限制。该研究突出表明,相关的AgSe配位单元能够同时针对类粒子声子和类波声子,并通过介导电荷极化的长程转移来降低它们对κ的贡献。这些基础性进展将推动具有定制热性能的晶体材料的设计。