Caredda Charly, Lange Frédéric, Giannoni Luca, Ezhov Ivan, Picart Thiébaud, Guyotat Jacques, Tachtsidis Ilias, Montcel Bruno
Université Claude Bernard Lyon 1, Univ Lyon, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR, Lyon, France.
University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom.
J Biomed Opt. 2025 Feb;30(2):023513. doi: 10.1117/1.JBO.30.2.023513. Epub 2024 Dec 2.
Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas can be assessed by monitoring cerebral hemodynamics and metabolism. Robust quantification of these biomarkers is complicated to perform during neurosurgery due to the critical context of the operating room. In actual devices, the inhomogeneities of the optical properties of the exposed brain cortex are poorly taken into consideration, which introduce quantification errors of biomarkers of brain functionality. Moreover, the best choice of spectral configuration is still based on an empirical approach.
We propose a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This simulator can provide realistic modeling of the cerebral cortex and the identification of the optimal wavelengths to monitor cerebral hemodynamics (oxygenated and deoxygenated hemoglobin Hb) and metabolism (oxidized state of cytochromes and and cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).
The digital instrument simulator is computed with white Monte Carlo simulations of a volume created from a real image of exposed cortex. We developed an optimization procedure based on a genetic algorithm to identify the best wavelength combinations in the visible and near-infrared range to quantify concentration changes in , Hb, oxCCO, and the oxidized state of cytochrome and (oxCytb and oxCytc).
The digital instrument allows the modeling of intensity maps collected by a camera sensor as well as images of path length to take into account the inhomogeneities of the optical properties. The optimization procedure helps to identify the best wavelength combination of 18 wavelengths that reduces the quantification errors in , Hb, and oxCCO by 47%, 57%, and 57%, respectively, compared with the gold standard of 121 wavelengths between 780 and 900 nm. The optimization procedure does not help to resolve changes in cytochrome and in a significant way but helps to better resolve oxCCO changes.
We proposed a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This digital instrument simulator and this optimization framework could be used to optimize the design of hyperspectral imaging devices.
术中光学成像技术是神经外科手术中用于定位人类大脑皮质功能区的一种技术。可通过监测脑血流动力学和代谢来评估这些区域。由于手术室环境的关键因素,在神经外科手术期间对这些生物标志物进行可靠的定量分析很复杂。在实际设备中,暴露的大脑皮质光学特性的不均匀性未得到充分考虑,这会导致脑功能生物标志物的定量误差。此外,光谱配置的最佳选择仍基于经验方法。
我们提出一种数字仪器模拟器,以优化用于术中脑图谱研究的高光谱系统的开发。该模拟器可以对大脑皮质进行逼真的建模,并识别用于监测脑血流动力学(氧合血红蛋白和脱氧血红蛋白Hb)和代谢(细胞色素b、细胞色素c和细胞色素c氧化酶的氧化态oxCytb、oxCytc和oxCCO)的最佳波长。
数字仪器模拟器通过对由暴露皮质的真实图像创建的体积进行白色蒙特卡罗模拟来计算。我们开发了一种基于遗传算法的优化程序,以识别可见光和近红外范围内的最佳波长组合,以量化细胞色素氧化酶、Hb、oxCCO以及细胞色素b和细胞色素c(oxCytb和oxCytc)氧化态的浓度变化。
该数字仪器可以对相机传感器收集的强度图以及光程图像进行建模,以考虑光学特性的不均匀性。该优化程序有助于识别18个波长的最佳波长组合,与780至900nm之间121个波长的金标准相比,该组合分别将细胞色素氧化酶、Hb和oxCCO的定量误差降低了47%、57%和57%。该优化程序对显著解析细胞色素b和细胞色素c的变化没有帮助,但有助于更好地解析oxCCO的变化。
我们提出了一种数字仪器模拟器,以优化用于术中脑图谱研究的高光谱系统的开发。这种数字仪器模拟器和这个优化框架可用于优化高光谱成像设备的设计。