Suppr超能文献

诊断范围:人工智能无法察觉思维未知之事。

Diagnostic scope: the AI can't see what the mind doesn't know.

作者信息

Weissman Gary E, Zwaan Laura, Bell Sigall K

机构信息

14640 Palliative and Advanced Illness Research (PAIR) Center, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA, USA.

Pulmonary, Allergy, and Critical Care Division, Department of Medicine, 14640 University of Pennsylvania Perelman School of Medicine , Philadelphia, PA, USA.

出版信息

Diagnosis (Berl). 2024 Dec 4;12(2):189-196. doi: 10.1515/dx-2024-0151. eCollection 2025 May 1.

Abstract

BACKGROUND

Diagnostic scope is the range of diagnoses found in a clinical setting. Although the diagnostic scope is an essential feature of training and evaluating artificial intelligence (AI) systems to promote diagnostic excellence, its impact on AI systems and the diagnostic process remains under-explored.

CONTENT

We define the concept of diagnostic scope, discuss its nuanced role in building safe and effective AI-based diagnostic decision support systems, review current challenges to measurement and use, and highlight knowledge gaps for future research.

SUMMARY

The diagnostic scope parallels the differential diagnosis although the latter is at the level of an encounter and the former is at the level of a clinical setting. Therefore, diagnostic scope will vary by local characteristics including geography, population, and resources. The true, observed, and considered scope in each setting may also diverge, both posing challenges for clinicians, patients, and AI developers, while also highlighting opportunities to improve safety. Further work is needed to systematically define and measure diagnostic scope in terms that are accurate, equitable, and meaningful at the bedside. AI tools tailored to a particular setting, such as a primary care clinic or intensive care unit, will each require specifying and measuring the appropriate diagnostic scope.

OUTLOOK

AI tools will promote diagnostic excellence if they are aligned with patient and clinician needs and trained on an accurately measured diagnostic scope. A careful understanding and rigorous evaluation of the diagnostic scope in each clinical setting will promote optimal care through human-AI collaborations in the diagnostic process.

摘要

背景

诊断范围是在临床环境中发现的诊断范围。尽管诊断范围是训练和评估人工智能(AI)系统以提升诊断水平的一个基本特征,但其对AI系统和诊断过程的影响仍未得到充分探索。

内容

我们定义了诊断范围的概念,讨论了其在构建安全有效的基于AI的诊断决策支持系统中的细微作用,回顾了当前在测量和使用方面的挑战,并突出了未来研究的知识空白。

总结

诊断范围与鉴别诊断类似,尽管后者是在单次就诊层面,而前者是在临床环境层面。因此,诊断范围会因当地特征(包括地理位置、人口和资源)而有所不同。每个环境中的真实、观察到的和考虑到的范围也可能存在差异,这既给临床医生、患者和AI开发者带来挑战,同时也凸显了提高安全性的机会。需要进一步开展工作,以便以准确、公平且在床边有意义的方式系统地定义和测量诊断范围。针对特定环境(如基层医疗诊所或重症监护病房)量身定制的AI工具,都需要明确并测量适当的诊断范围。

展望

如果AI工具符合患者和临床医生的需求,并在准确测量的诊断范围内进行训练,它们将促进卓越的诊断。对每个临床环境中的诊断范围进行仔细理解和严格评估,将通过诊断过程中的人机协作促进最佳医疗护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ca7/12105845/b5fb01055abb/j_dx-2024-0151_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验