Suppr超能文献

Training Status Influences Regulation of Muscle and PBMC TLR4 Expression and Systemic Cytokine Responses to Vigorous Endurance Exercise.

作者信息

Ducharme Jeremy B, Specht Jonathan W, Bailly Alyssa R, Fennel Zachary J, Nava Roberto C, Mermier Christine M, Laitano Orlando, Deyhle Michael R

机构信息

Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM.

Mammoth Biosciences, San Francisco, CA.

出版信息

Med Sci Sports Exerc. 2025 Apr 1;57(4):767-780. doi: 10.1249/MSS.0000000000003618. Epub 2024 Nov 29.

Abstract

INTRODUCTION

A bout of vigorous endurance exercise transiently activates Toll-like receptor 4 (TLR4) and reduces TLR4 protein expressed on peripheral blood mononuclear cells (PBMCs). Endurance training, on the other hand, reduces TLR4-mediated signaling and minimizes the physiological stress imposed by exercise. Less is known about what occurs in skeletal muscle regarding TLR4 regulation and signaling. Therefore, this study aimed to investigate the regulation of TLR4 expressed in different tissue types (PBMCs and skeletal muscle samples) between endurance-trained and untrained men following vigorous endurance exercise and determine the effect of training status on cytokine responses associated with TLR4 activation.

METHODS

Endurance-trained ( n = 7) and untrained ( n = 5) men cycled for 1 h at their respiratory compensation point, with blood and skeletal muscle samples collected pre- and 3 h post-exercise.

RESULTS

In response to vigorous exercise, untrained men experienced a decrease in inhibitor of κBα (IκBα) protein (suggesting IκB degradation and the activation of TLR4-associated transcription factor NF-κB) and TLR4 protein levels, along with a simultaneous increase in TLR4 mRNA expression in both skeletal muscle and PBMCs. Moreover, this exercise session led to elevated levels of circulating interleukin-6, tumor necrosis factor-α, and interleukin-1β. Collectively, these results suggest a heightened TLR4-mediated signaling pathway in untrained men. However, no changes in these targets were observed in endurance-trained men, possibly indicating a potential mechanism by which regular endurance training blunts systemic inflammation.

CONCLUSIONS

These findings highlight the potential of endurance training to mitigate TLR4-mediated signaling, such as systemic inflammation, and shed light on the effects of exercise on TLR4 expression in PBMCs and skeletal muscle.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验