Suppr超能文献

使用通用核苷酸连接天然和合成DNA:六核苷酸DNA的高效测序

Joining Natural and Synthetic DNA Using Biversal Nucleotides: Efficient Sequencing of Six-Nucleotide DNA.

作者信息

Wang Bang, Kim Hyo-Joong, Bradley Kevin M, Chen Cen, McLendon Chris, Yang Zunyi, Benner Steven A

机构信息

Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States.

Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States.

出版信息

J Am Chem Soc. 2024 Dec 25;146(51):35129-35138. doi: 10.1021/jacs.4c11043. Epub 2024 Dec 3.

Abstract

By rearranging hydrogen bond donor and acceptor groups within a standard Watson-Crick geometry, DNA can add eight independently replicable nucleotides forming four additional not found in standard Terran DNA. For many applications, the orthogonal pairing of standard and nonstandard pairs offers a key advantage. However, other applications require standard and nonstandard nucleotides to communicate with each other. This is especially true when seeking to recruit high-throughput instruments (e.g., Illumina), designed to sequence standard 4-nucleotide DNA, to sequence DNA that includes added nucleotides. For this purpose, PCR workflows are needed to replace nonstandard nucleotides in (for example) a 6-letter DNA sequence by defined mixtures of standard nucleotides built from 4 nucleotides. High-throughput sequencing can then report the sequences of those mixtures to bioinformatic alignment tools, which infer the original 6-nucleotide sequence by analysis of the mixtures. Unfortunately, the intrinsic orthogonality of standard and nonstandard nucleotides often demand polymerases that violate pairing biophysics to do this replacement, leading to inefficiencies in this "transliteration" process. Thus, laboratory evolution (LIVE) using "anthropogenic evolvable genetic information systems" (AEGIS), an important "consumer" of new sequencing tools, has been slow to be democratized; robust sequencing is needed to identify the AegisBodies and AegisZymes that AEGIS-LIVE delivers. This work introduces a new way to connect synthetic and standard molecular biology: . In an example presented here, a pyrimidine analogue (pyridine-2-one, ) pairs with Watson-Crick geometry to both a nonstandard base (2-amino-8-imidazo-[1,2]-1,3,5-triazin-[8]-4-one, , the Watson-Crick partner of 6-amino-5-nitro-[1]-pyridin-2-one, ) and a base that completes the Watson-Crick hydrogen bond pattern (2-amino-2'-deoxyadenosine, ). PCR amplification of GACT DNA with dTP delivers products where : pairs are cleanly transliterated to A:T pairs. In parallel, PCR of the same GACT sample at higher pH delivers products where : pairs are cleanly transliterated to C:G pairs. By allowing robust sequencing of 6-letter GACT DNA, this workflow will help democratize AEGIS-LIVE. Further, other implementations of the biversal concept can enable communication across and between standard DNA and synthetic DNA more generally.

摘要

通过在标准的沃森-克里克几何结构内重新排列氢键供体和受体基团,DNA可以添加八个可独立复制的核苷酸,形成四个在标准地球DNA中未发现的额外核苷酸。对于许多应用而言,标准对与非标准对的正交配对具有关键优势。然而,其他应用需要标准核苷酸和非标准核苷酸相互通信。当试图采用旨在对标准4核苷酸DNA进行测序的高通量仪器(例如Illumina)对包含添加核苷酸的DNA进行测序时,情况尤其如此。为此,需要PCR工作流程,用由4种核苷酸构建的标准核苷酸的特定混合物替换(例如)6字母DNA序列中的非标准核苷酸。然后,高通量测序可以将这些混合物的序列报告给生物信息比对工具,该工具通过分析混合物推断出原始的6核苷酸序列。不幸的是,标准核苷酸和非标准核苷酸的内在正交性通常需要违反配对生物物理学的聚合酶来进行这种替换,从而导致这种“转译”过程效率低下。因此,使用“人为可进化遗传信息系统”(AEGIS)的实验室进化(LIVE),作为新测序工具的一个重要“消费者”,其普及速度一直很慢;需要强大的测序来识别AEGIS-LIVE产生的AegisBodies和AegisZymes。这项工作引入了一种连接合成分子生物学和标准分子生物学的新方法。在这里给出的一个例子中,一种嘧啶类似物(吡啶-2-酮)以沃森-克里克几何结构与一个非标准碱基(2-氨基-8-咪唑-[1,2]-1,3,5-三嗪-[8]-4-酮,6-氨基-5-硝基-[1]-吡啶-2-酮的沃森-克里克配对伙伴)以及一个完成沃森-克里克氢键模式的碱基(2-氨基-2'-脱氧腺苷)配对。用dTP对GACT DNA进行PCR扩增得到的产物中:对被干净地转译为A:T对。同时,在更高pH值下对相同的GACT样品进行PCR得到的产物中:对被干净地转译为C:G对。通过允许对6字母的GACT DNA进行强大的测序,这个工作流程将有助于使AEGIS-LIVE普及。此外,可以更广泛地实现通用概念的其他实现方式,从而实现标准DNA与合成DNA之间以及跨越它们的通信。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验