Altun Ahmet, Leach Isaac F, Neese Frank, Bistoni Giovanni
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202421922. doi: 10.1002/anie.202421922. Epub 2024 Dec 11.
We introduce the fragment-pairwise Local Energy Decomposition (fp-LED) scheme for precise quantification of individual interactions contributing to the binding energy of arbitrary chemical entities, such as protein-ligand binding energies, lattice energies of molecular crystals, or association energies of large biomolecular assemblies. Using fp-LED, we can assess whether the contribution to the binding energy arising from noncovalent interactions between pairs of molecular fragments in any chemical system is attractive or repulsive, and accurately quantify its magnitude at the coupled cluster level - commonly considered as the "gold standard" of computational chemistry. Such insights are crucial for advancing molecular and material design strategies in fields like catalysis and therapeutic development. Illustrative applications across diverse fields demonstrate the versatility and accuracy of this theoretical framework, promising profound implications for fundamental understanding and practical applications.
我们引入了片段成对局部能量分解(fp-LED)方案,用于精确量化对任意化学实体结合能有贡献的个体相互作用,如蛋白质-配体结合能、分子晶体的晶格能或大型生物分子组装体的缔合能。使用fp-LED,我们可以评估任何化学系统中分子片段对之间非共价相互作用对结合能的贡献是吸引性的还是排斥性的,并在耦合簇水平上准确量化其大小——耦合簇水平通常被视为计算化学的“金标准”。这些见解对于推进催化和治疗开发等领域的分子和材料设计策略至关重要。跨不同领域的示例应用展示了该理论框架的通用性和准确性,有望对基础理解和实际应用产生深远影响。