Suppr超能文献

直接模拟和机器学习结构识别揭示了软马氏体相变和孪晶动力学。

Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics.

作者信息

Fukuda Jun-Ichi, Takahashi Kazuaki Z

机构信息

Department of Physics, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.

International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2412476121. doi: 10.1073/pnas.2412476121. Epub 2024 Dec 3.

Abstract

Phase transition between ordered phases has garnered attention from the viewpoint of materials science as well as statistical physics. One interesting example is martensitic transformation and the resulting formation of twin structures, in which atoms or molecules that form one crystalline phase move in a concerted and diffusionless manner toward another crystalline phase. Recently martensitic transformation has been observed experimentally also in various soft materials. However, the complex internal structures involving many molecules have eluded direct investigation of the dynamical processes of martensitic transformation. Here, we carry out a direct simulation of mesoscale structural transition of a liquid crystalline blue phase (BP) of cubic symmetry, known as BP II. The dynamics is simulated by a Langevin-type equation for the orientational order parameter with thermal fluctuations. We demonstrate that machine-learning-aided analysis of local structures successfully unravels the transformation process from a perfect lattice of BP II to a twinned lattice of another BP (BP I). The nucleation of BP I is initiated by the breakup of junctions of line defects (disclinations), followed by the deformation of disclination network. We further show that twinned BP I is reversibly transformed to a perfect lattice of BP II by temperature variation. Order-parameter-based simulations with machine-learning-aided local structure identification provide valuable insights into not only the martensitic transformation of soft materials but also a wider class of complex structural transitions between ordered phases.

摘要

有序相之间的相变从材料科学以及统计物理学的角度引发了关注。一个有趣的例子是马氏体相变以及由此产生的孪晶结构的形成,其中形成一个晶相的原子或分子以协同且无扩散的方式向另一个晶相移动。最近,在各种软材料中也通过实验观察到了马氏体相变。然而,涉及许多分子的复杂内部结构使得对马氏体相变动力学过程的直接研究变得困难。在此,我们对立方对称的液晶蓝相(BP),即BP II,进行了中尺度结构转变的直接模拟。通过带有热涨落的朗之万型取向序参量方程对动力学进行模拟。我们证明,机器学习辅助的局部结构分析成功揭示了从BP II的完美晶格到另一种BP(BP I)的孪晶晶格的转变过程。BP I的形核是由线缺陷(位错)的节点破裂引发的,随后是位错网络的变形。我们进一步表明,通过温度变化,孪晶BP I可以可逆地转变为BP II的完美晶格。基于序参量的模拟以及机器学习辅助的局部结构识别不仅为软材料的马氏体相变,也为更广泛的有序相之间的复杂结构转变提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3a/11648898/0096e6fa08db/pnas.2412476121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验