Suppr超能文献

透明细胞肾细胞癌患者缺血性中风风险的预测列线图

Predictive nomogram for ischemic stroke risk in clear cell renal cell carcinoma patients.

作者信息

Wen Jie, Rong Yi, Kang Yinbo, Lv Dingyang, Cui Fan, Zhou Huiyu, Jia Mohan, Wang Qiwei, Shuang Weibing

机构信息

Department of Urology, First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, China.

Department of First Clinical Medical College, Shanxi Medical University, No.56 Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China.

出版信息

Sci Rep. 2024 Dec 4;14(1):30162. doi: 10.1038/s41598-024-82072-9.

Abstract

Clear cell renal cell carcinoma (ccRCC) and ischemic stroke are critical global health challenges with a notable association. This study explores the correlation between tumor-related factors and ischemic stroke risk, aiming to construct a predictive nomogram model for ischemic stroke in ccRCC patients. We retrospectively analyzed data from ccRCC patients who underwent nephrectomy at the First Hospital of Shanxi Medical University between January 1, 2013, and May 31, 2022. The data were randomly divided into a training cohort (70%) and a validation cohort (30%). Predictive factors were identified using univariate logistic regression, least absolute shrinkage and selection operator regression, and multivariate logistic regression. A nomogram and a Shiny local calculator were developed using these predictors. We identified six predictors for the nomogram: WHO/ISUP grade, diabetes, hypertension, LDL-C, age, and D-dimer. The nomogram showed good discrimination, with an area under the ROC curve of 0.816 in the training cohort and 0.775 in the validation cohort. The optimal cutoff value was 53.7%. The model demonstrated excellent calibration and clinical applicability. WHO/ISUP grade correlates with ischemic stroke risk, offering insights into cancer-related ischemic stroke mechanisms. This nomogram aids in identifying high-risk individuals among ccRCC patients, facilitating early management and improved outcomes.

摘要

透明细胞肾细胞癌(ccRCC)和缺血性中风是严峻的全球健康挑战,且二者存在显著关联。本研究探讨肿瘤相关因素与缺血性中风风险之间的相关性,旨在构建ccRCC患者缺血性中风的预测列线图模型。我们回顾性分析了2013年1月1日至2022年5月31日在山西医科大学第一医院接受肾切除术的ccRCC患者的数据。这些数据被随机分为训练队列(70%)和验证队列(30%)。使用单因素逻辑回归、最小绝对收缩和选择算子回归以及多因素逻辑回归来确定预测因素。利用这些预测因素开发了列线图和一个Shiny本地计算器。我们确定了列线图的六个预测因素:WHO/ISUP分级、糖尿病、高血压、低密度脂蛋白胆固醇、年龄和D-二聚体。列线图显示出良好的区分度,训练队列中ROC曲线下面积为0.816,验证队列中为0.775。最佳截断值为53.7%。该模型显示出良好的校准和临床适用性。WHO/ISUP分级与缺血性中风风险相关,为癌症相关缺血性中风机制提供了见解。该列线图有助于识别ccRCC患者中的高危个体,促进早期管理并改善预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a406/11615042/408d35130b55/41598_2024_82072_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验