Suppr超能文献

基于分子动力学的单晶GaN振动辅助纳米划痕材料去除机制研究

Research on the material removal mechanism of vibration-assisted nano-scratch on single-crystal GaN by molecular dynamics.

作者信息

Luo Bin, Li Yuwei, Miao Jun, Jiao ZhenHua, Fu Youzhi, Shu Rong

机构信息

School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang, 330000, China.

School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510635, China.

出版信息

J Mol Model. 2024 Dec 4;31(1):3. doi: 10.1007/s00894-024-06232-4.

Abstract

CONTEXT

Single-crystal gallium nitride (GaN) is a semiconductor material known for its hardness and brittleness. This research aims to reveal the differences in the micro-mechanisms of material removal during traditional grinding and ultrasonic vibration-assisted grinding and to provide guidance for the high-efficiency, high-quality planarization processing of single-crystal GaN. To achieve this purpose, molecular dynamics (MD) simulation methods were used to establish a model (30 nm × 40 nm × 15 nm) of single-crystal GaN being scratched by a single abrasive grain with and without ultrasonic vibration assistance. The differences in the surface morphology and subsurface damage formation mechanisms of single-crystal GaN under conditions with and without ultrasonic assistance were compared. The results indicate that, compared to traditional grinding, the periodic ultrasonic vibrations reduce the normal force and result in a more uniform distribution of stress and temperature, thereby mitigating local stress concentration and thermal accumulation effects. Ultrasonic vibration alters the motion of the abrasive grain, expanding the material removal range from 7.384 to 10.315 nm, decreasing the number of residual atoms in the machining area, and lowering the chip pileup height at the leading edge of the abrasive grain from 2.063 to 1.528 nm. Additionally, the micro-shear deformation induced by ultrasonic vibrations helps to suppress brittle fracturing caused by excessive local stress, thus reducing the thickness of the damaged subsurface. At a scratch depth of 2 nm, the total length of dislocation lines in the ultrasonic-assisted scratch is reduced from 185.256 to 33.315 nm compared to traditional scratching. These findings offer new insights into the microscopic mechanisms of material removal in high-efficiency, high-quality grinding processes of single-crystal GaN.

METHOD

This study adopts LAMMPS software for MD simulations to investigate the physical behavior of GaN during the grinding process. The simulation results are then visualized and analyzed using OVITO software to elucidate microstructural changes in the material. During the simulation, the temperature of the Newtonian layer is calculated based on the statistical analysis of atomic velocities under the NVE ensemble. The grinding force applied to the GaN workpiece is determined by differentiating the atomic potential energy. Von Mises stress analysis is adopted to ascertain the stress distribution during the scratching process. Finally, the changes in the crystal structure during scratching are identified and classified using analysis of identified defect structures.

摘要

背景

单晶氮化镓(GaN)是一种以硬度和脆性著称的半导体材料。本研究旨在揭示传统磨削和超声振动辅助磨削过程中材料去除微观机制的差异,为单晶GaN的高效、高质量平面化加工提供指导。为实现这一目的,采用分子动力学(MD)模拟方法,建立了在有无超声振动辅助下单晶GaN被单个磨粒划伤的模型(30nm×40nm×15nm)。比较了有无超声辅助条件下单晶GaN的表面形貌和亚表面损伤形成机制的差异。结果表明,与传统磨削相比,周期性超声振动降低了法向力,使应力和温度分布更均匀,从而减轻了局部应力集中和热积累效应。超声振动改变了磨粒的运动,使材料去除范围从7.384nm扩大到10.315nm,减少了加工区域的残余原子数量,并使磨粒前缘的切屑堆积高度从2.063nm降低到1.528nm。此外,超声振动引起的微剪切变形有助于抑制局部应力过大导致的脆性断裂,从而减小损伤亚表面的厚度。在划痕深度为2nm时,与传统划痕相比,超声辅助划痕中位错线的总长度从185.256nm减少到33.315nm。这些发现为单晶GaN高效、高质量磨削过程中材料去除的微观机制提供了新的见解。

方法

本研究采用LAMMPS软件进行MD模拟,以研究GaN在磨削过程中的物理行为。然后使用OVITO软件对模拟结果进行可视化和分析,以阐明材料中的微观结构变化。在模拟过程中,基于NVE系综下原子速度的统计分析来计算牛顿层的温度。通过对原子势能求导来确定施加在GaN工件上的磨削力。采用冯·米塞斯应力分析来确定划痕过程中的应力分布。最后,通过对识别出的缺陷结构进行分析,识别并分类划痕过程中晶体结构的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验