Spector Jeffrey O, Chen Jiayi, Szczesna Ewa, Roll-Mecak Antonina
Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA.
Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA.
J Microsc. 2025 Apr;298(1):10-16. doi: 10.1111/jmi.13375. Epub 2024 Dec 4.
Interference Reflection Microscopy (IRM) is an optical technique that relies on the interference between the reflected light from an incident beam as it passes through materials of different refractive indices. This technique has been successfully used to image microtubules, biologically important biofilaments with a diameter of 25 nm. However, it is often desirable to image both the microtubule and microtubule interacting proteins simultaneously. Here we present a simple modification to a standard multicolour total internal reflection fluorescence (TIRF) microscope that enables simultaneous high-speed IRM and single molecule TIRF imaging. Our design utilises a camera for each channel (IRM and TIRF) allowing independent optimisation of camera parameters for the two different modalities. We illustrate its application by imaging unlabelled microtubules and GFP-labelled end-binding protein EB1, which forms comets on the tips of polymerising microtubules. Our design is easily implemented, and with minimal cost, making it accessible to any laboratory with an existing fluorescence microscope.
干涉反射显微镜(IRM)是一种光学技术,它依赖于入射光束在穿过不同折射率的材料时反射光之间的干涉。该技术已成功用于对微管成像,微管是直径为25纳米的具有生物学重要性的生物丝。然而,通常希望同时对微管和与微管相互作用的蛋白质进行成像。在这里,我们展示了对标准多色全内反射荧光(TIRF)显微镜的一种简单改进,该改进能够实现同时进行高速IRM和单分子TIRF成像。我们的设计为每个通道(IRM和TIRF)配备了一个相机,允许针对两种不同模式独立优化相机参数。我们通过对未标记的微管和绿色荧光蛋白标记的末端结合蛋白EB1进行成像来说明其应用,EB1在聚合微管的末端形成彗星状结构。我们的设计易于实施,成本极低,使任何拥有现有荧光显微镜的实验室都能够使用。