Suppr超能文献

利用铁单原子进行电催化硝酸盐还原以可持续供应铵态氮来提高水稻产量。

Electrocatalytic nitrate reduction using iron single atoms for sustainable ammonium supplies to increase rice yield.

作者信息

Liu Chunlei, Ma Jingchen, Wang Manting, Xu Jingru, Zhu Chao, Zhu Guibing

机构信息

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2408187121. doi: 10.1073/pnas.2408187121. Epub 2024 Dec 4.

Abstract

Increasing food production and ensuring drinking water safety have always been a focus of attention, especially for people in underdeveloped regions of the world. Traditional excessive fertilizer applications have increased crop yield but also caused groundwater nitrate pollution. Agricultural irrigating water is an important reservoir for nitrogen (N) (e.g., nitrate) accumulation after fertilization. Ammonium (NH-N) is a more readily absorbed N form by rice than nitrate (NO-N). In this study, we proposed a strategy using iron single-atom catalysts (Fe-SAC) to selectively reduce NO-N to NH-N from the real paddy field irrigating water to provide sustainable NH-N supplies for rice uptakes, thereby highlighting decreasing N fertilizer applications and mitigating NO-N pollution. Then, we constructed a solar-energy-driven electrochemical reactor for NO-N reduction, with the Fe single atom as the core catalyst, and achieved an average NH-N selectivity of 80.2 ± 2.6% with no additional energy input. Sustainable NH-N supplies resulted in a 30.4 % increase in the 100-grain weight of the cultivated rice and a 50% decrease of fertilizer application than those of the fertilization group in the pot experiment, which were one of the best values ever reported. Furthermore, the N isotope tracing results indicated a N use efficiency (NUE) from NO-N of 71.2 ± 3.2%. Sustainable NH-N supplies played a key role in promoting rice root development which contributed to the high NUE. Our study shares unique insights in increasing grain yield, reducing fertilizer applications, and preventing nitrate leaching into groundwater.

摘要

提高粮食产量和确保饮用水安全一直是人们关注的焦点,对于世界欠发达地区的人们来说尤为如此。传统的过量施肥增加了作物产量,但也造成了地下水硝酸盐污染。农业灌溉水是施肥后氮(N)(如硝酸盐)积累的重要储存库。铵态氮(NH-N)是水稻比硝态氮(NO-N)更容易吸收的氮形态。在本研究中,我们提出了一种策略,即使用铁单原子催化剂(Fe-SAC)从实际稻田灌溉水中选择性地将NO-N还原为NH-N,为水稻吸收提供可持续的NH-N供应,从而突出减少氮肥施用和减轻NO-N污染。然后,我们构建了一个以铁单原子为核心催化剂的太阳能驱动的电化学反应器用于NO-N还原,在无额外能量输入的情况下实现了平均80.2±2.6%的NH-N选择性。在盆栽试验中,可持续的NH-N供应使种植水稻的百粒重增加了30.4%,施肥量比施肥组减少了50%,这是有史以来报道的最佳值之一。此外,氮同位素示踪结果表明,来自NO-N的氮利用效率(NUE)为71.2±3.2%。可持续的NH-N供应在促进水稻根系发育方面发挥了关键作用,这有助于提高氮利用效率。我们的研究在提高粮食产量、减少肥料施用和防止硝酸盐渗入地下水方面提供了独特的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aac/11648875/aac595407e4a/pnas.2408187121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验