Suppr超能文献

流通式水系有机氧化还原液流电池的流场设计与可视化

Flow field design and visualization for flow-through type aqueous organic redox flow batteries.

作者信息

Peng Kang, Jiang Chenxiao, Zhang Zirui, Zhang Chao, Wang Jing, Song Wanjie, Ma Yunxin, Tang Gonggen, Zuo Peipei, Yang Zhengjin, Xu Tongwen

机构信息

Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.

Suqian Time Energy Storage Technology Co., Ltd., Suqian 223800, P. R. China.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2406182121. doi: 10.1073/pnas.2406182121. Epub 2024 Dec 4.

Abstract

Aqueous organic redox flow batteries (AORFBs), which exploit the reversible redox reactions of water-soluble organic electrolytes to store electricity, have emerged as a promising electrochemical energy storage technology. Organic electrolytes possess fast electron-transfer rates that are two or three orders of magnitude faster than those of their inorganic or organometallic counterparts; therefore, their performance at the electrode is limited by mass transport. Direct adoption of conventional cell stacks with flow fields designed for inorganic electrolytes may compromise AORFB performance owing to severe cell polarization. Here, we report the design of a flow field for flow-through type AORFBs based on three-dimensional multiphysics simulation, to realize the uniform distribution of electrolyte flow and flow enhancements within a porous electrode. The electrolyte flow is visualized by operando imaging. Our results show that multistep distributive flow channels at the inlet and point-contact blocks at the outlet are crucial geometrical merits of the flow field, significantly reducing local concentration overpotentials. The prototype pH-neutral TEMPTMA/MV cell at 1.5 M assembled with the optimized flow field exhibits a peak power density of 267.3 mW cm. The flow field design enables charging of the cell at current densities up to 300 mA cm, which is unachievable with the conventional serpentine flow field, where immediate voltage cutoff of the cell occurs. Our results highlight the importance of AORFB cell stack engineering and provide a method to visualize electrolyte flow, which will be appealing to the field of aqueous flow batteries.

摘要

水系有机氧化还原液流电池(AORFBs)利用水溶性有机电解质的可逆氧化还原反应来存储电能,已成为一种很有前景的电化学储能技术。有机电解质具有快速的电子转移速率,比其无机或有机金属同类电解质快两到三个数量级;因此,它们在电极上的性能受传质限制。直接采用为无机电解质设计的具有流场的传统电池堆可能会因严重的电池极化而损害AORFB的性能。在此,我们基于三维多物理场模拟报告了一种用于流通式AORFBs的流场设计,以实现电解质流在多孔电极内的均匀分布和流动增强。通过原位成像可视化电解质流。我们的结果表明,入口处的多级分布式流道和出口处的点接触块是流场的关键几何优点,可显著降低局部浓度过电位。采用优化流场组装的1.5 M的原型pH中性TEMPTMA/MV电池的峰值功率密度为267.3 mW/cm²。该流场设计能够使电池在高达300 mA/cm²的电流密度下充电,这是传统蛇形流场无法实现的,在传统蛇形流场中电池会立即出现电压截断。我们的结果突出了AORFB电池堆工程的重要性,并提供了一种可视化电解质流的方法,这将对水系液流电池领域具有吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d6/11648653/20745e87a465/pnas.2406182121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验