Suppr超能文献

使用浸入边界/有限元方法对静脉瓣膜进行三维流固耦合建模。

Three-dimensional fluid-structure interaction modelling of the venous valve using immersed boundary/finite element method.

作者信息

Wang Bo, Feng Liuyang, Xu Lei, Gao Hao, Luo Xiaoyu, Qi Nan

机构信息

Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.

School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK.

出版信息

Comput Biol Med. 2025 Feb;185:109450. doi: 10.1016/j.compbiomed.2024.109450. Epub 2024 Dec 3.

Abstract

Research on venous hemodynamics is pivotal for unravelling venous diseases, including varicose veins and deep vein thrombosis, essential for clinical management, treatment and artificial valve design. In this study, a three-dimensional (3D) numerical simulation, employing the immersed boundary/finite element method, is constructed to explore the fluid-structure interaction (FSI) between intravenous blood and venous valves. A hyperelastic constitutive model is used to capture the incompressible, nonlinear mechanical response. Our findings reveal the periodic characteristics of valve movement and intravenous blood flow throughout the cardiac cycle, alongside quantified physiological parameters such as blood pressure, flow rate, geometric orifice area, and stress-strain distribution on venous valve surfaces. The study unveils a significant correlation between dynamic valve motion and vortices within the venous sinus. Stress and strain concentrate primarily at the free edge of venous valves, which is in contrast to 2D modelling. Moreover, increased hydrostatic venous pressure is found to be the key to venous vessel dilation. The effects of fibrosis and atrophy of venous valves on venous hemodynamics are compared and analysed. This FSI numerical study introduces a fully 3D framework for modelling the venous system, expected to provide crucial references for understanding the development and mechanism underlying venous diseases, thereby furnishing a scientific underpinning for their prevention, diagnosis, and treatment.

摘要

静脉血流动力学研究对于揭示包括静脉曲张和深静脉血栓形成在内的静脉疾病至关重要,这对临床管理、治疗及人工瓣膜设计必不可少。在本研究中,构建了一种采用浸入边界/有限元方法的三维(3D)数值模拟,以探究静脉内血液与静脉瓣膜之间的流固相互作用(FSI)。使用超弹性本构模型来捕捉不可压缩的非线性力学响应。我们的研究结果揭示了整个心动周期中瓣膜运动和静脉内血流的周期性特征,以及诸如血压、流速、几何开口面积和静脉瓣膜表面应力应变分布等量化的生理参数。该研究揭示了动态瓣膜运动与静脉窦内涡流之间的显著相关性。应力和应变主要集中在静脉瓣膜的自由边缘,这与二维建模情况相反。此外,发现静脉静水压升高是静脉血管扩张的关键。比较并分析了静脉瓣膜纤维化和萎缩对静脉血流动力学的影响。这项FSI数值研究引入了一个用于静脉系统建模的全3D框架,有望为理解静脉疾病的发展和机制提供关键参考,从而为其预防、诊断和治疗提供科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3af6/11781961/ff1c8d99ad8b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验