Su Chun-Yan, Li Dong, Wang Li-Jun
College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
Food Chem. 2025 Mar 1;467:142276. doi: 10.1016/j.foodchem.2024.142276. Epub 2024 Nov 29.
This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network. At the same calcium ion concentration, CCIM hydrogel exhibited higher mechanical strength and viscoelasticity properties compared to GIM hydrogel. The rapid release of Ca in CCIM allowed for complete cross-linking with sodium alginate, forming a uniform 3D network structure. In contrast, the slow released Ca in GIM resulted in a heterogeneous structure with a tough outer shell and incomplete internal cross-linking. Specifically, the CCIM hydrogel showed a compact network structure and the highest mechanical strength at a calcium chloride concentration of 1.6% (w/v). This study demonstrates that the Ca release rate significantly impacts the microstructure and mechanical properties of double network hydrogels prepared by the immersion method. With this preparation strategy, corn starch‑sodium alginate edible gels that provided higher strength could be fabricated.
本研究探索了采用两种不同的钙离子交联方法制备玉米淀粉-海藻酸钠双网络水凝胶及其特性:葡萄糖酸内酯浸泡法(GIM)和氯化钙浸泡法(CCIM)。我们研究了这些水凝胶的离子交联机制,并比较了它们的微观结构和力学性能。我们的结果突出了GIM水凝胶和CCIM水凝胶之间的显著差异,CCIM方法产生的网络更均匀、更致密。在相同的钙离子浓度下,与GIM水凝胶相比,CCIM水凝胶表现出更高的机械强度和粘弹性。CCIM中钙的快速释放使得其能与海藻酸钠完全交联,形成均匀的三维网络结构。相比之下,GIM中钙的缓慢释放导致结构不均匀,外壳坚硬且内部交联不完全。具体而言,CCIM水凝胶在氯化钙浓度为1.6%(w/v)时呈现出致密的网络结构和最高的机械强度。本研究表明,钙释放速率对通过浸泡法制备的双网络水凝胶的微观结构和力学性能有显著影响。采用这种制备策略,可以制备出具有更高强度的玉米淀粉-海藻酸钠可食用凝胶。