Suppr超能文献

预测肝内胆管癌淋巴结转移的机器学习模型的开发与验证:一项回顾性队列研究。

Development and validation of a machine-learning model to predict lymph node metastasis of intrahepatic cholangiocarcinoma: A retrospective cohort study.

作者信息

Mi Shizheng, Qiu Guoteng, Zhang Zhihong, Jin Zhaoxing, Xie Qingyun, Hou Ziqi, Ji Jun, Huang Jiwei

机构信息

Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Biosci Trends. 2025 Jan 14;18(6):535-544. doi: 10.5582/bst.2024.01282. Epub 2024 Dec 5.

Abstract

Lymph node metastasis in intrahepatic cholangiocarcinoma significantly impacts overall survival, emphasizing the need for a predictive model. This study involved patients who underwent curative liver resection between different time periods. Three machine learning models were constructed with a training cohort (2010-2016) and validated with a separate cohort (2019-2023). A total of 170 patients were included in the training set and 101 in the validation cohort. The lymph node status of patients not undergoing lymph node dissection was predicted, followed by survival analysis. Among the models, the support vector machine (SVM) had the best discrimination, with an area under the curve (AUC) of 0.705 for the training set and 0.754 for the validation set, compared to the random forest (AUC: 0.780/0.693) and the logistic regression (AUC: 0.703/0.736). Kaplan-Meier analysis indicated that patients in the positive lymph node group or predicted positive group had significantly worse overall survival (OS: p < 0.001 for both) and disease-free survival (DFS: p < 0.001 for both) compared to negative groups. An online user-friendly calculator based on the SVM model has been developed for practical application.

摘要

肝内胆管癌的淋巴结转移对总生存期有显著影响,这凸显了建立预测模型的必要性。本研究纳入了在不同时间段接受根治性肝切除术的患者。使用一个训练队列(2010 - 2016年)构建了三种机器学习模型,并在一个单独的队列(2019 - 2023年)中进行验证。训练集共纳入170例患者,验证队列纳入101例患者。对未进行淋巴结清扫的患者的淋巴结状态进行预测,随后进行生存分析。在这些模型中,支持向量机(SVM)具有最佳的区分能力,训练集的曲线下面积(AUC)为0.705,验证集为0.754,相比之下,随机森林(AUC:0.780/0.693)和逻辑回归(AUC:0.703/0.736)。Kaplan - Meier分析表明,与阴性组相比,淋巴结阳性组或预测为阳性组的患者的总生存期(OS:两者均p < 0.001)和无病生存期(DFS:两者均p < 0.001)显著更差。基于支持向量机模型开发了一个在线用户友好型计算器以供实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验