Hedrich Rainer, Gilliham Matthew
Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082, Würzburg, Germany.
ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA, 5064, Australia.
New Phytol. 2025 Feb;245(3):982-988. doi: 10.1111/nph.20311. Epub 2024 Dec 4.
Channelrhodopsins (CHRs), originating within algae and protists, are membrane-spanning ion channel proteins that are directly activated and/or deactivated by specific wavelengths of light. Since 2005, CHRs have been deployed as genetically encoded optogenetic tools to rapidly advance understanding of neuronal networks. CHRs provide the opportunity to finely tune ion transport across membranes and regulate membrane potential. These are fundamental biochemical signals, which in plants can be translated into physiological and developmental responses such as changes in photosynthesis, growth, turgor, vascular hydraulics, phosphorylation or reactive oxygen species (ROS) status, gene expression, or even cell death. Exploration of CHR family diversity and structure-function engineering has led to the expansion of the CHR optogenetic toolbox, offering unparalleled opportunities to precisely control and understand electrical and secondary messenger signalling in higher plants. In this Tansley Insight, we provide an overview of the recent progress in the application of CHR optogenetics in higher plants and discuss their possible uses in the remote control of plant biology, illuminating a new future domain for plant research enabled through synthetic biology.
通道视紫红质(Channelrhodopsins,CHRs)起源于藻类和原生生物,是跨膜离子通道蛋白,可被特定波长的光直接激活和/或失活。自2005年以来,CHRs已被用作基因编码的光遗传学工具,以迅速推动对神经网络的理解。CHRs为精细调节跨膜离子运输和调节膜电位提供了机会。这些是基本的生化信号,在植物中可转化为生理和发育反应,如光合作用、生长、膨压、维管水力、磷酸化或活性氧(ROS)状态、基因表达的变化,甚至细胞死亡。对CHR家族多样性和结构-功能工程的探索导致了CHR光遗传学工具箱的扩展,为精确控制和理解高等植物中的电信号和第二信使信号提供了无与伦比的机会。在这篇《坦斯利洞察》中,我们概述了CHR光遗传学在高等植物中的应用的最新进展,并讨论了它们在植物生物学远程控制中的可能用途,为通过合成生物学实现的植物研究照亮了一个新的未来领域。