Suppr超能文献

使用铜纳米团簇进行电化学CO还原时的配体依赖性簇内相互作用

Ligand-Dependent Intracluster Interactions in Electrochemical CO Reduction Using Cu Nanoclusters.

作者信息

Shingyouchi Yamato, Ogami Masaki, Biswas Sourav, Tanaka Tomoya, Kamiyama Maho, Ikeda Kaoru, Hossain Sakiat, Yoshigoe Yusuke, Osborn D J, Metha Gregory F, Kawawaki Tokuhisa, Negishi Yuichi

机构信息

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.

Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

出版信息

Small. 2025 Apr;21(16):e2409910. doi: 10.1002/smll.202409910. Epub 2024 Dec 4.

Abstract

The electrochemical CO reduction reaction (CORR) has been extensively studied because it can be leveraged to directly convert CO into valuable hydrocarbons. Among the various catalysts, copper nanoclusters (Cu NCs) exhibit high selectivity and efficiency for producing CORR products owing to their unique geometric/electronic structures. However, the influence of protective ligands on the CORR performance of Cu NCs remains unclear. In this study, it is shown that different thiolate ligands, despite having nearly identical geometries, can substantially affect the electrochemical stability of Cu NCs in the CORR. Notably, Cu NCs protected by 2-phenylethanethiolate exhibit greater stability and achieve a relatively higher selectivity (≈40%) for formic acid production compared with the cyclohexanethiolate-protected counterpart. These insights are crucial for designing Cu NCs that are both stable and highly selective, enhancing their efficacy for electrochemical CO reduction.

摘要

电化学CO还原反应(CORR)已得到广泛研究,因为它可用于直接将CO转化为有价值的碳氢化合物。在各种催化剂中,铜纳米团簇(Cu NCs)由于其独特的几何/电子结构,在生产CORR产物方面表现出高选择性和效率。然而,保护配体对Cu NCs的CORR性能的影响仍不清楚。在本研究中,结果表明,尽管不同的硫醇盐配体具有几乎相同的几何结构,但它们会显著影响Cu NCs在CORR中的电化学稳定性。值得注意的是,与环己烷硫醇盐保护的Cu NCs相比,由2-苯乙硫醇盐保护的Cu NCs表现出更高的稳定性,并且在甲酸生产方面实现了相对更高的选择性(≈40%)。这些见解对于设计既稳定又具有高选择性的Cu NCs至关重要,有助于提高它们在电化学CO还原中的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f5/12019909/4cb11030397c/SMLL-21-2409910-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验