Biswas Sourav, Shingyouchi Yamato, Kamiyama Maho, Jena Milan Kumar, Ogami Masaki, Kawawaki Tokuhisa, Pathak Biswarup, Negishi Yuichi
Research Institute for Science & Technology, Tokyo University of Science, Tokyo, 162-8601, Japan.
Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
Small. 2025 Jun;21(25):e2500302. doi: 10.1002/smll.202500302. Epub 2025 Mar 6.
Ligand-protected copper nanoclusters (Cu NCs) with atomic precision have emerged rapidly due to their fascinating structural architectures and versatile catalytic properties, making them ideal for investigating structure-activity relationships. Despite their potential, challenges such as stability issues and limited structural diversity have restricted deeper exploration. In this study, three distinct Cu NCs are synthesized using a one-pot reduction strategy by carefully modifying reaction conditions. Intriguingly, the same p-toluenethiol ligand produces two different geometries, while varying ligands with m-aminobenzethiol-yielded clusters with similar geometric architectures. These NCs are evaluated for electrocatalytic CO reduction, uncovering diverse catalytic activities and product selectivity. Experimental and theoretical analyses reveal that the interplay between the core structure confinement and surface ligand environment governs their catalytic behavior. Specifically, the Cu NC with p-toluenethiol ligand exhibits selectivity toward HCOOH production (FE∼45% at -1.2 V vs RHE), whereas substituting p-toluenethiol with m-aminobenzethiol shifted the selectivity to the competitive side reaction (FE∼82% at -1.2 V vs RHE). Conversely, altering the geometry of Cu NC while retaining the p-toluenethiol ligand decreases such selectivity (FE∼35% at -1.2 V vs RHE). These findings highlight the tunability of Cu NCs for tailored catalytic applications through precise control of their structure and surface chemistry.
具有原子精度的配体保护铜纳米团簇(Cu NCs)因其迷人的结构架构和多样的催化性能而迅速兴起,使其成为研究构效关系的理想选择。尽管它们具有潜力,但诸如稳定性问题和结构多样性有限等挑战限制了更深入的探索。在本研究中,通过精心修改反应条件,采用一锅还原策略合成了三种不同的Cu NCs。有趣的是,相同的对甲苯硫醇配体产生了两种不同的几何形状,而用间氨基苯硫醇改变配体则产生了具有相似几何架构的团簇。对这些NCs进行了电催化CO还原评估,发现了不同的催化活性和产物选择性。实验和理论分析表明,核心结构限制与表面配体环境之间的相互作用决定了它们的催化行为。具体而言,具有对甲苯硫醇配体的Cu NC对HCOOH生成具有选择性(在-1.2 V vs RHE时FE约为45%),而用间氨基苯硫醇取代对甲苯硫醇则将选择性转移到竞争性副反应(在-1.2 V vs RHE时FE约为82%)。相反,在保留对甲苯硫醇配体的同时改变Cu NC的几何形状会降低这种选择性(在-1.2 V vs RHE时FE约为35%)。这些发现突出了通过精确控制其结构和表面化学来调整Cu NCs以实现定制催化应用的可调性。