Lou Zhefeng, Zhao Yingjie, Gong Zhihao, Zhu Ziye, Wu Mengqi, Wang Tao, Wang Jialu, Qi Haoyu, Zuo Huakun, Xu Zhuokai, Shen Jichuang, Wang Zhiwei, Li Lan, Xu Shuigang, Kong Wei, Li Wenbin, Zheng Xiaorui, Wang Hua, Lin Xiao
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, P. R. China.
Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou, 310058, P. R. China.
Adv Mater. 2025 Jan;37(4):e2409887. doi: 10.1002/adma.202409887. Epub 2024 Dec 4.
2D materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, the enormous SHG from the phase engineering of a high-performance semiconductor, BiOSe (BOS), under uniaxial strain, is demonstrated. SHG signals captured in strained 20 nm-BOS films exceed those of NbOI and NbOCl of similar thickness by a factor of 10, and are four orders of magnitude higher than monolayer-MoS, resulting in a significant second-order nonlinear susceptibility on the order of 1 nm V. Intriguingly, the strain enables continuous adjustment of the ferroelectric phase transition across room temperature. An exceptionally large tunability of SHG, approximately six orders of magnitude, is achieved through strain modulation. This colossal SHG, originating from the geometric phase of Bloch wave functions and coupled with sensitive strain tunability in this air-stable 2D semiconductor, opens new possibilities for designing chip-scale, switchable nonlinear optical devices.
具有显著二次谐波产生(SHG)的二维材料有望应用于未来的片上非线性光学领域。同时具备巨大SHG响应和环境稳定性的相关材料一直是人们长期追求的目标。在此,我们展示了在单轴应变下,通过高性能半导体BiOSe(BOS)的相工程产生的巨大SHG。在应变的20纳米BOS薄膜中捕获的SHG信号比类似厚度的NbOI和NbOCl的信号高出10倍,并且比单层MoS高出四个数量级,从而产生了约1纳米·伏数量级的显著二阶非线性极化率。有趣的是,应变能够在室温范围内连续调节铁电相变。通过应变调制实现了SHG的超大可调性,约为六个数量级。这种巨大的SHG源于布洛赫波函数的几何相位,并与这种空气稳定的二维半导体中的敏感应变可调性相结合,为设计芯片级、可切换的非线性光学器件开辟了新的可能性。