Canavesi Irene, Viswakarma Navin, Epel Boris, Kotecha Mrignayani
Oxygen Measurement Core, O2M Technologies, Chicago, IL, 60612, USA.
Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA.
Mol Imaging Biol. 2025 Feb;27(1):64-77. doi: 10.1007/s11307-024-01963-5. Epub 2024 Dec 4.
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions. Noninvasive in vivo oxygen imaging assessment of implanted BAP devices will provide the necessary feedback and improve the chances of success. Pulse-mode electron paramagnetic resonance (EPR) oxygen imaging (EPROI) using injectable trityl OX071 as the oxygen-sensitive agent is an excellent technique for obtaining partial oxygen pressure (pO) maps in vitro and in vivo. In this study, our goal was to optimize in vivo mouse abdominal EPROI and demonstrate proof-of-concept pO imaging of subcutaneously implanted BAP devices.
All EPROI experiments were performed using a 25 mT EPROI instrument, JIVA-25®. For in vivo EPROI experiments, trityl OX071, a whole-body mouse resonator (∅32 mm × 35 mm), C57BL6 mice, and the inversion recovery electron spin echo (IRESE) pulse sequence were utilized. We investigated the signal amplitude and pO in mouse abdomen region for intravenous (i.v.) and intraperitoneal (i.p.) injection methods with either only a single bolus (B) or bolus plus infusion (BI) for 72.2 mM OX071 and the effect of OX071 concentrations from 18 to 72.2 mM for the i.p.-B injection method. We also investigated the impact of animal respiratory rate on mouse abdominal pO. Finally, we performed proof-of-concept pO imaging of two subcutaneously implanted BAP devices, OxySite and TheraCyte. At the end of the four-week study, the TheraCyte devices were extracted and analyzed for fibrosis, vascular differentiation, and immune cell infiltration.
We established that mouse abdominal pO remains stable irrespective of trityl injection methods, concentrations, imaging time, or animal breathing rate. We demonstrate that the i.p.-B and i.p.-BI methods are suitable for EPROI, and i.p.-B method provides higher signal amplitude compared to i.v.-BI and up to 75 min of imaging. An injection with a reduced trityl concentration and higher volume provides higher signal amplitude for i.p.-B method at the beginning. We also highlight the advantage of milder anesthesia for consistent, reliable mouse pO imaging. Finally, we demonstrate that EPROI could provide longitudinal noninvasive oxygen assessment of subcutaneously implanted BAP devices in vivo.
In vivo EPROI is a reliable technique for mouse abdominal oxygen imaging and longitudinal assessment of subcutaneously implanted BAP devices noninvasively. This work reports abdominal oxygen imaging in the mouse model and demonstrates its application for the assessment of BAP devices. Even though the application focus of this work was on cell therapy, the techniques developed will have a much broader use in the biomedical field.
1型糖尿病(T1D)是一种自身免疫性疾病,会导致产生胰岛素的胰腺β细胞丧失。β细胞替代装置或生物人工胰腺(BAP)在治愈T1D和实现长期无需免疫抑制剂的胰岛素自主分泌方面显示出前景。BAP装置中的缺氧会损害细胞,并限制装置尺寸。对植入的BAP装置进行无创体内氧成像评估将提供必要的反馈并提高成功几率。使用可注射的三苯甲基自由基OX071作为氧敏感剂的脉冲模式电子顺磁共振(EPR)氧成像(EPROI)是一种在体外和体内获取局部氧分压(pO)图的出色技术。在本研究中,我们的目标是优化体内小鼠腹部EPROI,并展示皮下植入的BAP装置的概念验证pO成像。
所有EPROI实验均使用25 mT的EPROI仪器JIVA - 25®进行。对于体内EPROI实验,使用了三苯甲基自由基OX071、全身小鼠谐振器(∅32 mm×35 mm)、C57BL6小鼠以及反转恢复电子自旋回波(IRESE)脉冲序列。我们研究了静脉注射(i.v.)和腹腔注射(i.p.)方法,对于72.2 mM的OX071,采用单次推注(B)或推注加输注(BI),以及腹腔注射 - B方法中18至72.2 mM的OX071浓度对小鼠腹部区域信号幅度和pO的影响。我们还研究了动物呼吸频率对小鼠腹部pO的影响。最后,我们对两个皮下植入的BAP装置OxySite和TheraCyte进行了概念验证pO成像。在为期四周的研究结束时,取出TheraCyte装置并分析其纤维化、血管分化和免疫细胞浸润情况。
我们确定,无论三苯甲基自由基的注射方法、浓度、成像时间或动物呼吸频率如何,小鼠腹部pO均保持稳定。我们证明腹腔注射 - B和腹腔注射 - BI方法适用于EPROI,并且腹腔注射 - B方法与静脉注射 - BI相比提供更高的信号幅度,成像时间长达75分钟。对于腹腔注射 - B方法,降低三苯甲基自由基浓度并增加注射体积在开始时可提供更高的信号幅度。我们还强调了使用较温和麻醉以实现一致、可靠的小鼠pO成像的优势。最后,我们证明EPROI可以对皮下植入的BAP装置进行体内纵向无创氧评估。
体内EPROI是一种用于小鼠腹部氧成像和皮下植入BAP装置的纵向无创评估的可靠技术。这项工作报告了小鼠模型中的腹部氧成像,并展示了其在BAP装置评估中的应用。尽管这项工作的应用重点是细胞治疗,但所开发的技术将在生物医学领域有更广泛的用途。