Suppr超能文献

基于机器学习的椎间盘退变中程序性细胞死亡类型及关键基因分析

Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration.

作者信息

Lv Yigang, Du Jiawei, Xiong Haoning, Feng Lei, Zhang Di, Zhou Hengxing, Feng Shiqing

机构信息

Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.

Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.

出版信息

Apoptosis. 2025 Feb;30(1-2):250-266. doi: 10.1007/s10495-024-02047-z. Epub 2024 Dec 4.

Abstract

Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches. Using datasets GSE167199, GSE176205, GSE34095, GSE56081, and GSE70362, relevant gene expression and clinical data were analyzed. Differential expression gene (DEG) analysis identified upregulated genes linked to 15 PCD types. Gene Set Variation Analysis (GSVA) was employed to pinpoint key PCD types contributing to disc degeneration. Core genes were identified through machine learning techniques, while immune infiltration and single-cell analysis helped identify apoptosis-related cell types. Molecular docking, along with in vivo and in vitro experiments using a murine IVDD model, validated potential drug interactions. The results identified apoptosis, autophagy, ferroptosis, and necroptosis as key PCD types in IVDD. A gene module associated with apoptosis showed a strong correlation with the severity of disc degeneration, revealing 34 central genes in the gene network. Drug screening identified Glibenclamide as effectively interacting with PDCD6 and UBE2K. Subsequent in vitro and in vivo experiments demonstrated that Glibenclamide reduced apoptosis and delayed disc degeneration progression. This study provides a comprehensive bioinformatics analysis of PCD in IVDD, identifying four primary PCD types contributing to the disease's progression. The findings offer novel insights into the molecular pathology of disc degeneration and suggest promising therapeutic strategies for future treatment development.

摘要

椎间盘退变(IVDD)与多种形式的程序性细胞死亡(PCD)密切相关。识别关键的PCD类型和相关基因对于理解IVDD的分子机制以及发现潜在的治疗靶点至关重要。本研究旨在通过综合的生物信息学和实验方法阐明IVDD中的核心PCD类型、相关基因和潜在的药物相互作用。使用数据集GSE167199、GSE176205、GSE34095、GSE56081和GSE70362,分析了相关基因表达和临床数据。差异表达基因(DEG)分析确定了与15种PCD类型相关的上调基因。基因集变异分析(GSVA)用于确定导致椎间盘退变的关键PCD类型。通过机器学习技术识别核心基因,而免疫浸润和单细胞分析有助于识别凋亡相关的细胞类型。分子对接以及使用小鼠IVDD模型的体内和体外实验验证了潜在的药物相互作用。结果确定凋亡、自噬、铁死亡和坏死性凋亡是IVDD中的关键PCD类型。一个与凋亡相关的基因模块与椎间盘退变的严重程度密切相关,揭示了基因网络中的34个核心基因。药物筛选确定格列本脲与PDCD6和UBE2K有效相互作用。随后的体外和体内实验表明,格列本脲可减少凋亡并延缓椎间盘退变进程。本研究对IVDD中的PCD进行了全面的生物信息学分析,确定了导致疾病进展的四种主要PCD类型。这些发现为椎间盘退变的分子病理学提供了新的见解,并为未来治疗开发提出了有前景的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验