Suppr超能文献

通过关联网络分析确定的健康成年人类肠道微生物群中假定关键物种的特征。

Characteristics of putative keystones in the healthy adult human gut microbiota as determined by correlation network analysis.

作者信息

Bauchinger Franziska, Seki David, Berry David

机构信息

Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science CeMESS, University of Vienna, Vienna, Austria.

Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.

出版信息

Front Microbiol. 2024 Nov 20;15:1454634. doi: 10.3389/fmicb.2024.1454634. eCollection 2024.

Abstract

Keystone species are thought to play a critical role in determining the structure and function of microbial communities. As they are important candidates for microbiome-targeted interventions, the identification and characterization of keystones is a pressing research goal. Both empirical as well as computational approaches to identify keystones have been proposed, and in particular correlation network analysis is frequently utilized to interrogate sequencing-based microbiome data. Here, we apply an established method for identifying putative keystone taxa in correlation networks. We develop a robust workflow for network construction and systematically evaluate the effects of taxonomic resolution on network properties and the identification of keystone taxa. We are able to identify correlation network keystone species and genera, but could not detect taxa with high keystone potential at lower taxonomic resolution. Based on the correlation patterns observed, we hypothesize that the identified putative keystone taxa have a stabilizing effect that is exerted on correlated taxa. Correlation network analysis further revealed subcommunities present in the dataset that are remarkably similar to previously described patterns. The interrogation of available metatranscriptomes also revealed distinct transcriptional states present in all putative keystone taxa. These results suggest that keystone taxa may have stabilizing properties in a subset of community members rather than global effects. The work presented here contributes to the understanding of correlation network keystone taxa and sheds light on their potential ecological significance.

摘要

关键物种被认为在决定微生物群落的结构和功能方面发挥着关键作用。由于它们是微生物组靶向干预的重要候选对象,因此关键物种的识别和表征是一个紧迫的研究目标。已经提出了识别关键物种的实证方法和计算方法,特别是相关网络分析经常被用于分析基于测序的微生物组数据。在这里,我们应用一种既定的方法来识别相关网络中的假定关键分类群。我们开发了一个强大的网络构建工作流程,并系统地评估分类分辨率对网络属性和关键分类群识别的影响。我们能够识别相关网络中的关键物种和属,但在较低的分类分辨率下无法检测到具有高关键潜力的分类群。基于观察到的相关模式,我们假设所识别的假定关键分类群对相关分类群具有稳定作用。相关网络分析还揭示了数据集中存在的亚群落,这些亚群落与先前描述的模式非常相似。对可用宏转录组的分析还揭示了所有假定关键分类群中存在的不同转录状态。这些结果表明,关键分类群可能在一部分群落成员中具有稳定特性,而不是具有全局效应。本文所呈现的工作有助于理解相关网络关键分类群,并揭示它们潜在的生态意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcb1/11614764/815fd3425112/fmicb-15-1454634-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验