Zheng Jiancheng, Li Diao, Liu Peng, Cui Xiaoqi, Zhang Bin, Geng Wei, Zhang Qiang, Xu Zhenyu, Kauppinen Esko I, Sun Zhipei
QTF Center of Excellence, Department of Electronics and Nanoengineering, Aalto University, FI-00076 Espoo, Finland.
College of Information Engineering, SanmingUniversity, Sanming 365004, China.
Nanophotonics. 2023 Jul 24;12(17):3397-3407. doi: 10.1515/nanoph-2023-0192. eCollection 2023 Aug.
Double-walled carbon nanotubes have shown competitive properties in broadband optical pulse generation owning to the intrinsic electronic properties. Synchronization of ultrafast optical pulses in multiple wavelengths is a key technique for numerous applications, such as nonlinear frequency conversion, ultrafast pump-probe, coherent Raman scattering spectroscopy, coherent optical synthesis, etc. In this work, we demonstrate the mode-locking and synchronization of 1.55 µm pulses with 1 µm and 1.9 µm pulses via a single saturable absorber based on double-walled carbon nanotubes. The large optical nonlinearity and broadband optical absorption in the double-walled carbon nanotubes enable independent and synchronized mode-locking in >900 nm bandwidth. In addition, we present a creative concept to realize multi-wavelength synchronization from a single laser system. Our results demonstrate a straightforward and feasible approach towards pulse synchronization over ultra-broad bandwidth with flexible wavelength selection in the near-infrared region.
由于其固有的电子特性,双壁碳纳米管在宽带光脉冲产生方面展现出了具有竞争力的特性。多波长超快光脉冲的同步是众多应用中的一项关键技术,例如非线性频率转换、超快泵浦 - 探测、相干拉曼散射光谱、相干光学合成等。在这项工作中,我们通过基于双壁碳纳米管的单个可饱和吸收体,展示了1.55微米脉冲与1微米和1.9微米脉冲的锁模和同步。双壁碳纳米管中的大光学非线性和宽带光吸收能够在大于900纳米的带宽内实现独立且同步的锁模。此外,我们提出了一个创造性的概念,以从单个激光系统实现多波长同步。我们的结果展示了一种在近红外区域实现超宽带宽、具有灵活波长选择的脉冲同步的直接且可行的方法。