Viedma David, Marques Anselmo M, Dias Ricardo G, Ahufinger Verònica
Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
Department of Physics & i3N, University of Aveiro, 3810-193 Aveiro, Portugal.
Nanophotonics. 2024 Jan 3;13(1):51-61. doi: 10.1515/nanoph-2023-0590. eCollection 2024 Jan.
Square-root topology is one of the newest additions to the ever expanding field of topological insulators (TIs). It characterizes systems that relate to their parent TI through the squaring of their Hamiltonians. Extensions to 2 -root topology, where is the number of squaring operations involved in retrieving the parent TI, were quick to follow. Here, we go one step further and develop the framework for designing general -root TIs, with any positive integer, using the Su-Schrieffer-Heeger (SSH) model as the parent TI from which the higher-root versions are constructed. The method relies on using loops of unidirectional couplings as building blocks, such that the resulting model is non-Hermitian and embedded with a generalized chiral symmetry. Edge states are observed at the branches of the complex energy spectrum, appearing within what we designate as a ring gap, shown to be irreducible to the usual point or line gaps. We further detail on how such an -root model can be realistically implemented in photonic ring systems. Near perfect unidirectional effective couplings between the main rings can be generated via mediating link rings with modulated gains and losses. These induce high imaginary gauge fields that strongly suppress couplings in one direction, while enhancing them in the other. We use these photonic lattices to validate and benchmark the analytical predictions. Our results introduce a new class of high-root topological models, as well as a route for their experimental realization.
平方根拓扑是不断扩展的拓扑绝缘体(TI)领域中最新加入的成员之一。它描述的系统是通过哈密顿量的平方与它们的母体TI相关联的。很快就出现了向2 - 根拓扑的扩展,其中 是在恢复母体TI过程中涉及的平方运算次数。在这里,我们更进一步,使用Su-Schrieffer-Heeger(SSH)模型作为构建高根版本的母体TI,开发设计一般 - 根TI( 为任意正整数)的框架。该方法依赖于使用单向耦合环作为构建块,使得所得模型是非厄米的并且具有广义手性对称性。在复能谱的 个分支处观察到边缘态,出现在我们称为环形能隙的范围内,显示出与通常的点能隙或线能隙不同。我们进一步详细说明了这样一个 - 根模型如何在光子环系统中实际实现。通过具有调制增益和损耗的中介连接环,可以在主环之间产生近乎完美的单向有效耦合。这些会诱导出高虚规范场,强烈抑制一个方向上的耦合,同时增强另一个方向上的耦合。我们使用这些光子晶格来验证和检验分析预测。我们的结果引入了一类新的高根拓扑模型,以及它们的实验实现途径。