Lv Qihao, Qin Xu, Hu Mingzhe, Li Peihang, Zhang Yongjian, Li Yue
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
Nanophotonics. 2024 Apr 26;13(16):2995-3003. doi: 10.1515/nanoph-2024-0123. eCollection 2024 Jul.
Metatronic circuits extend the concept of subwavelength-scaled lumped circuitry from electronics to optics and photonics, providing a distinctive design paradigm for versatile optical nanocircuits. Here, based on the design of optical nanocircuits using metatronics concept, we introduce a general approach for dispersion synthesis with metasurface to achieve high-selectivity filtering response. We theoretically and numerically demonstrate how to achieve basic circuit lumped elements in metatronics by tailoring the dispersion of metasurface at the frequency of interest. Then, following the Butterworth filter design method, the meticulously designed metasurface, acting as lumped elements, are properly stacked to achieve a near-rectangular filtering response. Compared to the conventional designs, the proposed approach can simultaneously combine high selectivity with the theoretically widest out-of-band rejection in a considerably simple and time-efficient manner of circuit assembly, similar to electronic circuits, without extensive numerical simulations and complex structures. This dispersion synthesis approach provides exciting possibilities for high-performance metasurface design and future integrated circuits and chips.
超材料电路将亚波长尺度集总电路的概念从电子学扩展到光学和光子学,为通用光学纳米电路提供了一种独特的设计范式。在此,基于使用超材料概念设计光学纳米电路,我们介绍一种利用超表面进行色散合成以实现高选择性滤波响应的通用方法。我们从理论和数值上证明了如何通过在感兴趣的频率上调整超表面的色散来在超材料中实现基本电路集总元件。然后,按照巴特沃斯滤波器设计方法,将精心设计的作为集总元件的超表面适当地堆叠起来,以实现近矩形滤波响应。与传统设计相比,所提出的方法能够以类似于电子电路的相当简单且省时的电路组装方式,同时将高选择性与理论上最宽的带外抑制相结合,而无需进行大量数值模拟和采用复杂结构。这种色散合成方法为高性能超表面设计以及未来的集成电路和芯片提供了令人兴奋的可能性。