Suppr超能文献

通过多种光子掺杂剂对ENZ介质进行色散编码。

Dispersion coding of ENZ media via multiple photonic dopants.

作者信息

Zhou Ziheng, Li Hao, Sun Wangyu, He Yijing, Liberal Iñigo, Engheta Nader, Feng Zhenghe, Li Yue

机构信息

Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China.

Department of Electrical and Electronic Engineering, Public University of Navarre, Pamplona, 31006, Spain.

出版信息

Light Sci Appl. 2022 Jul 6;11(1):207. doi: 10.1038/s41377-022-00892-8.

Abstract

Epsilon-near-zero (ENZ) media are opening up exciting opportunities to observe exotic wave phenomena. In this work, we demonstrate that the ENZ medium comprising multiple dielectric photonic dopants would yield a comb-like dispersion of the effective permeability, with each magnetic resonance dominated by one specific dopant. Furthermore, at multiple frequencies of interest, the resonant supercouplings appearing or not can be controlled discretely via whether corresponding dopants are assigned or not. Importantly, the multiple dopants in the ENZ host at their magnetic resonances are demonstrated to be independent. Based on this platform, the concept of dispersion coding is proposed, where photonic dopants serve as "bits" to program the spectral response of the whole composite medium. As a proof of concept, a compact multi-doped ENZ cavity is fabricated and experimentally characterized, whose transmission spectrum is manifested as a multi-bit reconfigurable frequency comb. The dispersion coding is demonstrated to fuel a batch of innovative applications including dynamically tunable comb-like dispersion profiled filters, radio-frequency identification tags, etc.

摘要

近零介电常数(ENZ)介质为观察奇异波现象带来了令人兴奋的机会。在这项工作中,我们证明,由多个介电光子掺杂剂组成的ENZ介质会产生梳状的有效磁导率色散,每个磁共振由一种特定的掺杂剂主导。此外,在多个感兴趣的频率下,共振超耦合的出现与否可以通过是否分配相应的掺杂剂来离散控制。重要的是,ENZ主体中的多个掺杂剂在其磁共振时被证明是相互独立的。基于这个平台,提出了色散编码的概念,其中光子掺杂剂充当“比特”来编程整个复合介质的光谱响应。作为概念验证,制作了一个紧凑的多掺杂ENZ腔并进行了实验表征,其透射光谱表现为多位可重构频率梳。色散编码被证明可以推动一系列创新应用,包括动态可调梳状色散轮廓滤波器、射频识别标签等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验