Liu Wanying, Yang Quanlong, Xu Quan, Jiang Xiaohan, Wu Tong, Gu Jianqiang, Han Jiaguang, Zhang Weili
Center for Terahertz Waves and College of Precision Instruments and Optoelectronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China.
School of Physics and Electronics, Central South University, Changsha 410083, China.
Nanophotonics. 2022 Jul 14;11(16):3631-3640. doi: 10.1515/nanoph-2022-0270. eCollection 2022 Sep.
Vortex beams carrying orbital angular momentum (OAM) open a new perspective in various terahertz research. Multichannel and divergence controllable terahertz vortex beam generation holds the key to promoting the development of OAM related terahertz research. Here, we introduced and experimentally demonstrated quasi-perfect vortex beam (Q-PVB) with a controllable divergence angle independent of the topological charge and multichannel Q-PVBs generation with all-dielectric multifunctional metasurfaces. By superimposing specific phase functions together into the metasurfaces, multiple vortex beams and four-channel Q-PVBs with different topological charges are generated as well as focused at separated positions. High resolution characterization of terahertz electric field shows the good quality and broadband properties of Q-PVBs. Interestingly, compared with conventional perfect vortex beam; Q-PVB displays a smaller divergence angle and thinner ring width. The metasurfaces proposed here provide a promising avenue to realize multichannel vortex beams generation in compact terahertz systems; benefiting OAM related researches such as mode division multiplexing, vortex beam related plasmonic enhancement and spinning objective detection.
携带轨道角动量(OAM)的涡旋光束为各种太赫兹研究开辟了新的视角。多通道且发散可控的太赫兹涡旋光束产生是推动与OAM相关的太赫兹研究发展的关键。在此,我们介绍并通过实验证明了具有与拓扑电荷无关的可控发散角的准完美涡旋光束(Q-PVB)以及利用全介质多功能超表面产生多通道Q-PVB。通过将特定的相位函数叠加到超表面中,产生了具有不同拓扑电荷的多个涡旋光束和四通道Q-PVB,并聚焦在不同位置。太赫兹电场的高分辨率表征显示了Q-PVB的良好品质和宽带特性。有趣的是,与传统的完美涡旋光束相比,Q-PVB具有更小的发散角和更窄的环宽。这里提出的超表面为在紧凑型太赫兹系统中实现多通道涡旋光束产生提供了一条有前景的途径,有利于诸如模式分复用、与涡旋光束相关的等离子体增强和旋转目标检测等与OAM相关的研究。