Suppr超能文献

用于求解偏微分方程的可重构专用光子集成电路。

Reconfigurable application-specific photonic integrated circuit for solving partial differential equations.

作者信息

Ye Jiachi, Shen Chen, Peserico Nicola, Meng Jiawei, Ma Xiaoxuan, Nouri Behrouz Movahhed, Popescu Cosmin-Constantin, Hu Juejun, Kang Haoyan, Wang Hao, El-Ghazawi Tarek, Dalir Hamed, Sorger Volker J

机构信息

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.

Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA.

出版信息

Nanophotonics. 2024 Jan 25;13(12):2231-2239. doi: 10.1515/nanoph-2023-0732. eCollection 2024 May.

Abstract

Solving mathematical equations faster and more efficiently has been a Holy Grail for centuries for scientists and engineers across all disciplines. While electronic digital circuits have revolutionized equation solving in recent decades, it has become apparent that performance gains from brute-force approaches of compute-solvers are quickly saturating over time. Instead, paradigms that leverage the universes' natural tendency to minimize a system's free energy, such as annealers or Ising Machines, are being sought after due to favorable complexity scaling. Here, we introduce a programmable analog solver leveraging the formal mathematical equivalence between Maxwell's equations and photonic circuitry. It features a mesh network of nanophotonic beams to find solutions to partial differential equations. As an example, we designed, fabricated, and demonstrated a novel application-specific photonic integrated circuit comprised of electro-optically reconfigurable nodes and experimentally validated 90 % accuracy with respect to a commercial solver. Finally, we tested this photonic integrated chip performance by simulating thermal diffusion on a spacecraft's heat shield during re-entry to a planet's atmosphere. The programmable light-circuitry presented herein offers a facile route for solving complex problems and thus will have profound potential applications across many scientific and engineering fields.

摘要

几个世纪以来,对于所有学科的科学家和工程师而言,更快、更高效地求解数学方程一直是梦寐以求的目标。虽然电子数字电路在近几十年来彻底改变了方程求解方式,但很明显,计算求解器的暴力方法所带来的性能提升正随着时间迅速趋于饱和。相反,由于有利的复杂度缩放特性,利用宇宙使系统自由能最小化的自然倾向的范式,如退火器或伊辛机,正受到追捧。在此,我们介绍一种可编程模拟求解器,它利用麦克斯韦方程组与光子电路之间的形式数学等价性。它具有一个纳米光子束的网格网络,用于求解偏微分方程。例如,我们设计、制造并展示了一种由电光可重构节点组成的新型专用光子集成电路,并通过实验验证了相对于商业求解器而言90%的准确率。最后,我们通过模拟航天器重返行星大气层期间隔热罩上的热扩散来测试这种光子集成电路的性能。本文提出的可编程光电路为解决复杂问题提供了一条便捷途径,因此在许多科学和工程领域将具有深远的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd76/11501621/e1608b9a7958/j_nanoph-2023-0732_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验