Luo Hao, Li Fan, Wang Mingli, Sun Shang, Zhou Min, Zhang Wenjing, Guo Hengrui, Su Xueyin, Li Xiaolong, Ma Lina
School of Materials Science and Engineering, Xiamen University of Technology Xiamen 361024 China
School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China.
Chem Sci. 2024 Nov 18;16(2):753-760. doi: 10.1039/d4sc06593j. eCollection 2025 Jan 2.
The naturally sluggish redox kinetics and limited utilization associated with the sulfur conversion in Zn/S electrochemistry hinder its real application. Herein, we report an phase reconstruction strategy that activates the catalytic activity of vanadium oxides for invoking redox-catalysis to manipulate reversible sulfur conversion. It was identified that the VO@C/S precursor derived from metal organic frameworks could be transformed into VO ·HO@C/S by a facile electrochemical induction process. Vanadium oxides can realize a faster zinc ion storage process than sulfur components during the discharging process, thereby the pre-zincified Zn VO·HO behaves as a redox medium to catalyze the sulfur reduction a spontaneous reaction (Zn VO + S = Zn VO + ZnS, △ = -6.4 kJ mol). For the reverse battery recharging, the electrodeposited ZnS around the active sites can be easily activated and the facile Zn transport between Zn VO·HO and ZnS enables the reversible conversion of ZnS back to S (Zn VO + ZnS = Zn VO + S, Δ = -7.02 kJ mol). Accordingly, the composite cathode delivers a high capacity of 1630.7 mA h g and maintains stable capacity retention after 150 cycles at 4 A g. The proposed redox catalytic effect sheds light on the tunable Zn-S chemistry.
锌/硫(Zn/S)电化学中与硫转化相关的自然缓慢的氧化还原动力学和有限的利用率阻碍了其实际应用。在此,我们报告了一种相重构策略,该策略可激活钒氧化物的催化活性,以引发氧化还原催化来控制可逆硫转化。经确定,源自金属有机框架的VO@C/S前驱体可通过简便的电化学诱导过程转化为VO·H₂O@C/S。在放电过程中,钒氧化物比硫组分能实现更快的锌离子存储过程,因此预锌化的ZnₓVO·H₂O充当氧化还原介质,催化硫还原——一个自发反应(ZnₓVO + S = Znₓ₋₁VO + ZnS,△ = -6.4 kJ mol⁻¹)。对于电池反向充电,活性位点周围电沉积的ZnS可轻松被激活,并且ZnₓVO·H₂O与ZnS之间便捷的锌传输使得ZnS可逆地转化回S(ZnₓVO + ZnS = Znₓ₋₁VO + S,Δ = -7.02 kJ mol⁻¹)。相应地,复合阴极具有1630.7 mA h g⁻¹的高容量,并在4 A g⁻¹下循环150次后保持稳定的容量保持率。所提出的氧化还原催化效应为可调控的锌-硫化学提供了启示。