Yang Yang, Zhu Ruijie, Wu Gang, Yang Wuhai, Yang Huijun, Yoo Eunjoo
Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan.
Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan.
ACS Nano. 2024 Jul 23;18(29):19003-19013. doi: 10.1021/acsnano.4c03074. Epub 2024 Jul 10.
The development of highly reversible zinc (Zn) metal anodes is pivotal for determining the feasibility of rechargeable aqueous Zn batteries. Our research quantitively evalulates how the hydrogen evolution reaction (HER) adversely affects Zn reversibility in batteries and emphasizes the importance of substrate design in modulating HER and its associated side reactions. When the cathodic reaction is dominated by HER, the Zn electrode exhibits low plating/stripping efficiency, characterized by extensive coverage of a passivation layer that encompasses the electrochemical inactive Zn. Therefore, we propose a strike-plating strategy that modifies the pristine substrate by initiating Zn plating at a high current density for a short time. This straightforward and effective approach has been proven to suppress hydrogen evolution and transform the electrodeposition mode into one dominated by Zn reduction. Notably, Zn metal exhibits exceptionally high average reversibility of 98.80% over 200 h on a stainless steel substrate, which was typically precluded in aqueous electrolytes because of their favorable HER capability. Additionally, our strike-plating strategy demonstrates an appliable pathway to achieve high Zn reversibility on Cu substrate, showing an average efficiency of 99.83% over 540 h at a high areal capacity of 10 mAh cm and high-performance Zn full cells with low N/P ratios. This research provides a foundation for future investigations into the underlying mechanisms of HER and strategies to optimize Zn-based battery performance.
高可逆性锌(Zn)金属负极的开发对于确定可充电水系锌电池的可行性至关重要。我们的研究定量评估了析氢反应(HER)如何对电池中锌的可逆性产生不利影响,并强调了在调节HER及其相关副反应中基底设计的重要性。当阴极反应以HER为主时,锌电极表现出较低的电镀/脱镀效率,其特征是覆盖有一层包含电化学惰性锌的钝化层。因此,我们提出了一种冲击电镀策略,通过在短时间内以高电流密度引发锌电镀来修饰原始基底。这种直接有效的方法已被证明可以抑制析氢,并将电沉积模式转变为以锌还原为主导的模式。值得注意的是,在不锈钢基底上,锌金属在200小时内表现出高达98.80%的异常高平均可逆性,而在水系电解质中,由于其良好的析氢能力,这种情况通常是无法实现的。此外,我们的冲击电镀策略展示了一条在铜基底上实现高锌可逆性的可行途径,在10 mAh cm的高面积容量和低N/P比的高性能锌全电池中,在540小时内平均效率达到99.83%。这项研究为未来对析氢潜在机制以及优化锌基电池性能策略的研究奠定了基础。