Morgado Tiago A, Silveirinha Mário G
Instituto de Telecomunicações and Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal.
University of Lisbon-Instituto Superior Técnico and Instituto de Telecomunicações, Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal.
Nanophotonics. 2022 Nov 1;11(21):4929-4936. doi: 10.1515/nanoph-2022-0451. eCollection 2022 Dec.
Here, we investigate the nonreciprocal propagation and amplification of surface plasmons in drift-current biased graphene, using both Galilean and relativistic-type Doppler shift transformations of the graphene's conductivity. Consistent with previous studies, both conductivity models predict strongly nonreciprocal propagation of surface plasmons due to the drag effect caused by the drifting electrons. In particular, the Galilean Doppler shift model leads to stronger spectral asymmetries in the plasmon dispersion with regimes of unidirectional propagation. Remarkably, it is shown that both conductivity models predict regimes of nonreciprocal plasmon amplification in a wide angular sector of in-plane directions when the drift-current biased graphene sheet is coupled to a plasmonic substrate (namely, SiC), with the plasmon amplification rate being substantially higher for the relativistic Doppler shift model.
在这里,我们利用石墨烯电导率的伽利略型和相对论型多普勒频移变换,研究了漂移电流偏置的石墨烯中表面等离激元的非互易传播和放大。与先前的研究一致,两种电导率模型都预测,由于漂移电子引起的拖曳效应,表面等离激元会发生强烈的非互易传播。特别是,伽利略多普勒频移模型在等离激元色散中导致更强的光谱不对称以及单向传播区域。值得注意的是,研究表明,当漂移电流偏置的石墨烯片与等离子体衬底(即碳化硅)耦合时,两种电导率模型都预测在面内方向的宽角度扇区内存在非互易等离激元放大区域,相对论多普勒频移模型的等离激元放大率要高得多。